Kafka参数详解
Posted 技术实践分享
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Kafka参数详解相关的知识,希望对你有一定的参考价值。
参数详解
Kafka的配置分为 broker、producter、consumer三个不同的配置,安装时以主配置broker为核心。
注:所有参数的调优、修改都与实际业务需求有关,并不是每个参数都需要操作,并且每个参数的调优幅度也会根据需求有所差异。关键:从实际需求出发,按业务规范进行调优。
(1) BROKER 的全局配置
注:最为核心的三个配置 broker.id、log.dir、zookeeper.connect 。
--------------------------------- 系统相关 --------------------------------------
broker.id =1
log.dirs = /tmp/kafka-logs
##已经弃用:提供给客户端响应的端口
port =6667
##可以接收消息体的最大大小,单位是字节
message.max.bytes =1000000
## broker 处理消息的最大线程数,一般情况下不需要去修改
num.network.threads =3
## broker处理磁盘IO 的线程数 ,数值应该大于你的硬盘数
num.io.threads =8
## 一些后台任务处理的线程数,例如过期消息文件的删除等,一般情况下不需要去做修改
background.threads =4
## 等待IO线程处理的请求队列最大数,若是等待IO的请求超过这个数值,那么会停止接受外部消息,算是一种自我保护机制
queued.max.requests =500
host.name
## 已经弃用:仅在未设置advertised.listeners或listeners时使用。 改为使用`advertised.listeners`。 发布到ZooKeeper以供客户端使用的主机名。 在IaaS环境中,这可能需要与代理绑定的接口不同。 如果未设置,则将使用"host.name"的值(如果已配置)。 否则,它将使用从java.net.InetAddress.getCanonicalHostName()返回的值。
advertised.host.name
## 已经弃用:仅在未设置advertised.listeners或listeners时使用。 改为使用`advertised.listeners`。 要发布到ZooKeeper供客户端使用的端口。 在IaaS环境中,这可能需要与代理绑定的端口不同。 如果未设置,它将发布代理绑定到的相同端口。
advertised.port
## broker的监听IP/主机名:端口。监听器列表 - 我们将监听用逗号分隔的URI列表和监听器名称。 如果监听器名称不是安全协议,则还必须设置listener.security.protocol.map。 指定主机名为0.0.0.0以绑定到所有接口。 保持主机名为空以绑定到默认界面。 合法监听器列表的示例:PLAINTEXT:// myhost:9092,SSL://:9091 CLIENT://0.0.0.0:9092,REPLICATION:// localhost:9093。格式:listeners = listener_name://host_name:port;举例:listeners = PLAINTEXT://your.host.name:9092
listeners=PLAINTEXT://:9092
## socket的发送缓冲区,socket的调优参数SO_SNDBUFF
socket.send.buffer.bytes =100*1024
## socket的接受缓冲区,socket的调优参数SO_RCVBUFF
socket.receive.buffer.bytes =100*1024
## socket请求的最大数值,防止内存溢出,message.max.bytes必然要小于socket.request.max.bytes,会被topic创建时的指定参数覆盖
socket.request.max.bytes =100*1024*1024
---------------------------------- LOG相关 -------------------------------------
## topic的分区是以一堆segment文件存储的,这个控制每个segment的大小,会被topic创建时的指定参数覆盖
log.segment.bytes =1024*1024*1024
## 这个参数会在日志segment没有达到log.segment.bytes设置的大小,也会强制新建一个segment 会被 topic创建时的指定参数覆盖
log.roll.hours =24*7
## 日志清理策略 选择有:delete和compact。主要针对过期数据的处理,或是日志文件达到限制的额度,会被 topic创建时的指定参数覆盖
log.cleanup.policy = delete
## 数据存储的最大时间 超过这个时间 会根据log.cleanup.policy设置的策略处理数据,也就是消费端能够多久去消费数据。 log.retention.bytes和log.retention.minutes任意一个达到要求,都会执行删除,会被topic创建时的指定参数覆盖
log.retention.minutes=7days
##指定日志每隔多久检查看是否可以被删除,默认1分钟
log.cleanup.interval.mins=1
## topic每个分区的最大文件大小,一个topic的大小限制 = 分区数*log.retention.bytes 。-1表示没有大小限制。log.retention.bytes和log.retention.minutes任意一个达到要求,都会执行删除,会被topic创建时的指定参数覆盖
log.retention.bytes=-1
## 文件大小检查的周期时间,是否触发 log.cleanup.policy中设置的策略
log.retention.check.interval.ms=5minutes
## 是否开启日志压缩
log.cleaner.enable=false
## 日志压缩运行的线程数
log.cleaner.threads =1
## 日志压缩时候处理的最大大小
log.cleaner.io.max.bytes.per.second=None
## 日志压缩去重时候的缓存空间 ,在空间允许的情况下,越大越好
log.cleaner.dedupe.buffer.size=500*1024*1024
## 日志清理时候用到的IO块大小,一般不需要修改
log.cleaner.io.buffer.size=512*1024
## 日志清理中hash表的扩大因子 一般不需要修改
log.cleaner.io.buffer.load.factor =0.9
## 检查是否处罚日志清理的间隔
log.cleaner.backoff.ms =15000
## 日志清理的频率控制,越大意味着更高效的清理,同时会存在一些空间上的浪费,会被topic创建时的指定参数覆盖
log.cleaner.min.cleanable.ratio=0.5
## 对于压缩的日志保留的最长时间,也是客户端消费消息的最长时间,同log.retention.minutes的区别在于一个控制未压缩数据,一个控制压缩后的数据。会被topic创建时的指定参数覆盖
log.cleaner.delete.retention.ms =1day
## 对于segment日志的索引文件大小限制,会被topic创建时的指定参数覆盖
log.index.size.max.bytes =10*1024*1024
## 当执行一个fetch操作后,需要一定的空间来扫描最近的offset大小,设置越大,代表扫描速度越快,但是也更消耗内存,一般情况下不需要修改这个参数
log.index.interval.bytes =4096
## log文件"sync"到磁盘之前累积的消息条数。因为磁盘IO操作是一个慢操作,但又是一个"数据可靠性"的必要手段,所以此参数的设置,需要在"数据可靠性"与"性能"之间做必要的权衡。 如果此值过大,将会导致每次"fsync"的时间较长(IO阻塞); 如果此值过小,将会导致"fsync"的次数较多,这也意味着整体的client请求有一定的延迟。物理server故障,将会导致没有fsync的消息丢失.
log.flush.interval.messages=None
## 检查是否需要固化到硬盘(刷新数据到硬盘)的时间间隔
log.flush.scheduler.interval.ms =3000
## 仅仅通过interval来控制消息的磁盘写入时机,是不足的。 此参数用于控制"fsync"的时间间隔,如果消息量始终没有达到阀值,但是离上一次磁盘同步的时间间隔达到阀值,也将触发。
log.flush.interval.ms = None
## 文件在索引中清除后保留的时间,一般不需要去修改
log.delete.delay.ms =60000
## 控制上次固化硬盘的时间点,以便于数据恢复,一般不需要去修改
log.flush.offset.checkpoint.interval.ms =60000
--------------------------------- TOPIC相关 ------------------------------------
## 是否允许自动创建topic ,若是false,就需要通过命令创建topic
auto.create.topics.enable =true
## 一个topic ,默认分区的replication个数 ,不得大于集群中broker的个数
default.replication.factor =1
## 每个topic的分区个数,若是在topic创建时候没有指定的话 会被topic创建时的指定参数覆盖
num.partitions =1
例如: --replication-factor 3 --partitions 1--topic replicated-topic :名称replicated-topic有一个分区,分区被复制到三个broker上。
#是否启用删除Topic的操作,默认为false
#delete.topic.enable=true
-------------------------复制(Leader、replicas) 相关 --------------------------
## partition leader与replicas之间通讯时,socket的超时时间
controller.socket.timeout.ms =30000
## partition leader与replicas数据同步时,消息的队列尺寸
controller.message.queue.size=10
## replicas响应partition leader的最长等待时间,若是超过这个时间,就将replicas列入ISR(in-sync replicas),并认为它是死的,不会再加入管理中
replica.lag.time.max.ms =10000
## 如果follower落后与leader太多,将会认为此follower[或者说partition relicas]已经失效。通常,在follower与leader通讯时,因为网络延迟或者链接断开,总会导致replicas中消息同步滞后。如果消息之后太多,leader将认为此follower网络延迟较大或者消息吞吐能力有限,将会把此replicas迁移到其他follower中。在broker数量较少,或者网络不足的环境中,建议提高此值.
replica.lag.max.messages =4000
##follower与leader之间的socket超时时间
replica.socket.timeout.ms=30*1000
## leader复制时候的socket缓存大小
replica.socket.receive.buffer.bytes=64*1024
## replicas每次获取数据的最大大小
replica.fetch.max.bytes =1024*1024
## replicas同leader之间通信的最大等待时间,失败了会重试
replica.fetch.wait.max.ms =500
## fetch的最小数据尺寸,如果leader中尚未同步的数据没有达到此值,将会阻塞,直到满足条件
replica.fetch.min.bytes =1
## leader 进行复制的线程数,增大这个数值会增加follower的IO
num.replica.fetchers=1
## 每个replica检查是否将最高水位进行固化的频率
replica.high.watermark.checkpoint.interval.ms =5000
## 是否允许控制器关闭broker ,若是设置为true,会关闭所有在这个broker上的leader,并转移到其他broker
controlled.shutdown.enable =false
## 控制器关闭的尝试次数
controlled.shutdown.max.retries =3
## 每次关闭尝试的时间间隔
controlled.shutdown.retry.backoff.ms =5000
## 是否自动平衡broker之间的分配策略
auto.leader.rebalance.enable =false
## leader的不平衡比例,若是超过这个数值,会对分区进行重新的平衡
leader.imbalance.per.broker.percentage =10
## 检查leader是否不平衡的时间间隔
leader.imbalance.check.interval.seconds =300
## 客户端保留offset信息的最大空间大小
offset.metadata.max.bytes
--------------------------------ZooKeeper 相关--------------------------------
zookeeper.connect = hostname1:port1,hostname2:port2,hostname3:port3
## ZooKeeper的最大超时时间,就是心跳的间隔,若是没有反映,那么认为已经死了,不易过大
zookeeper.session.timeout.ms=6000
## ZooKeeper的连接超时时间
zookeeper.connection.timeout.ms =6000
## ZooKeeper集群中leader和follower之间的同步时间
zookeeper.sync.time.ms =2000
配置可修改,其中一部分配置是可以被每个topic自身的配置所代替覆盖,例如:
新增配置
bin/kafka-topics.sh --zookeeper localhost:2181--create --topic my-topic --partitions1--replication-factor1--config max.message.bytes=64000--config flush.messages=1
修改配置
bin/kafka-topics.sh --zookeeper localhost:2181--alter --topic my-topic --config max.message.bytes=128000
删除配置 :
bin/kafka-topics.sh --zookeeper localhost:2181--alter --topic my-topic --deleteConfig max.message.bytes
(2)CONSUMER 配置
注:最为核心的配置是group.id、zookeeper.connect
## Consumer归属的组ID,broker是根据group.id来判断是队列模式还是发布订阅模式,非常重要
group.id
## 消费者的ID,若是没有设置的话,会自增
consumer.id
## 一个用于跟踪调查的ID ,最好同group.id相同
client.id = group id value
## 对于zookeeper集群的指定,可以是多个hostname1:port1,hostname2:port2,hostname3:port3 ,且必须和broker使用同样的zk配置
zookeeper.connect=hostname1:port1,hostname2:port2,hostname3:port3
## zookeeper的心跳超时时间,超过这个时间就认为是dead消费者
zookeeper.session.timeout.ms =6000
## zookeeper的等待连接时间
zookeeper.connection.timeout.ms =6000
## zookeeper的follower同leader的同步时间
zookeeper.sync.time.ms =2000
## 当zookeeper中没有初始的offset时候的处理方式 。smallest :重置为最小值 largest:重置为最大值 anythingelse:抛出异常
auto.offset.reset = largest
## socket的超时时间,实际的超时时间是:max.fetch.wait + socket.timeout.ms.
socket.timeout.ms=30*1000
## socket的接受缓存空间大小
socket.receive.buffer.bytes=64*1024
##从每个分区获取的消息大小限制
fetch.message.max.bytes =1024*1024
## 是否在消费消息后将offset同步到zookeeper,当Consumer失败后就能从zookeeper获取最新的offset
auto.commit.enable =true
## 自动提交的时间间隔
auto.commit.interval.ms =60*1000
## 用来处理消费消息的块,每个块可以等同于fetch.message.max.bytes中数值
queued.max.message.chunks =10
## 当有新的consumer加入到group时,将会reblance,此后将会有partitions的消费端迁移到新的consumer上,如果一个consumer获得了某个partition的消费权限,那么它将会向zk注册"Partition Owner registry"节点信息,但是有可能此时旧的consumer尚没有释放此节点,此值用于控制,注册节点的重试次数.
rebalance.max.retries =4
## 每次再平衡的时间间隔
rebalance.backoff.ms =2000
## 每次重新选举leader的时间
refresh.leader.backoff.ms
## server发送到消费端的最小数据,若是不满足这个数值则会等待,直到满足数值要求
fetch.min.bytes =1
## 若是不满足最小大小(fetch.min.bytes)的话,等待消费端请求的最长等待时间
fetch.wait.max.ms =100
## 指定时间内没有消息到达就抛出异常,一般不需要改
consumer.timeout.ms = -1
(3) PRODUCER 配置
注:较核心的配置:metadata.broker.list、request.required.acks、producer.type、serializer.class
metadata.broker.list
##消息的确认模式
#0:不保证消息的到达确认,只管发送,低延迟但是会出现消息的丢失,在某个server失败的情况下,有点像TCP
#1:发送消息,并会等待leader 收到确认后,一定的可靠性
#-1:发送消息,等待leader收到确认,并进行复制操作后,才返回,最高的可靠性
request.required.acks =0
## 消息发送的最长等待时间
request.timeout.ms =10000
## socket的缓存大小
send.buffer.bytes=100*1024
## key的序列化方式,若是没有设置,同serializer.class
key.serializer.class
## 分区的策略,默认是取模
partitioner.class=kafka.producer.DefaultPartitioner
## 消息的压缩模式,默认是none,可以有gzip和snappy
compression.codec = none
## 可以针对默写特定的topic进行压缩
compressed.topics=null
## 消息发送失败后的重试次数
message.send.max.retries =3
## 每次失败后的间隔时间
retry.backoff.ms =100
## 生产者定时更新topic元信息的时间间隔 ,若是设置为0,那么会在每个消息发送后都去更新数据
topic.metadata.refresh.interval.ms =600*1000
## 用户随意指定,但是不能重复,主要用于跟踪记录消息
client.id=""
---------------------------------------- 消息模式相关 -----------------------------------------
## 生产者的类型 async:异步执行消息的发送 sync:同步执行消息的发送
producer.type=sync
## 异步模式下,那么就会在设置的时间缓存消息,并一次性发送
queue.buffering.max.ms =5000
## 异步的模式下,最长等待的消息数
queue.buffering.max.messages =10000
## 异步模式下,进入队列的等待时间;若是设置为0,那么要么进入队列,要么直接抛弃
queue.enqueue.timeout.ms = -1
## 异步模式下,每次发送的最大消息数,前提是触发了queue.buffering.max.messages或是queue.buffering.max.ms的限制
batch.num.messages=200
## 消息体的系列化处理类 ,转化为字节流进行传输
serializer.class= kafka.serializer.DefaultEncoder
以上是关于Kafka参数详解的主要内容,如果未能解决你的问题,请参考以下文章