RecSys2020-推荐系统顶会论文大集锦
Posted 推荐系统与计算广告
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了RecSys2020-推荐系统顶会论文大集锦相关的知识,希望对你有一定的参考价值。
第14届推荐人自己的年会RecSys已在9月22日到26日在线上举行。大会围绕着推荐系统相关问题进行了3场KeyNotes,5场Tutorials,接收了41篇长文,26篇短文。通过对主题演讲以及教程的总结发现,此次大会主要聚焦在了推荐系统中的Bias问题以及对话推荐系统、对抗机器学习在推荐中的应用等[1]。
文章内容仅供学习使用,如有侵权请联系作者删除。
点击蓝字关注我哦!
主题演讲
1. 社交媒体让我们容易被操纵的4个原因
4 Reasons Why Social Media Make Us Vulnerable to Manipulation
https://dl.acm.org/doi/pdf/10.1145/3383313.3418434
2. 搜索和推荐中的偏差
Bias in Search and Recommender Systems
https://dl.acm.org/doi/pdf/10.1145/3383313.3418435
3. “你真懂我的意思”: 能够真正理解并帮助用户的对话型人工智能代理
“You Really Get Me”: Conversational AI Agents That Can Truly Understand and Help Users
https://dl.acm.org/doi/pdf/10.1145/3383313.3418436
推荐Tutorial
1. 推荐的对抗性学习: 安全和生成任务的应用。
Adversarial Learning for Recommendation: Applications for Security and Generative Tasks — Concept to Code
https://dl.acm.org/doi/abs/10.1145/3383313.3411447
2. 基于贝叶斯值的推荐:一个基于模型的替代代理和基于反事实策略的推荐。
Bayesian Value Based Recommendation: A modelling based alternative to proxy and counterfactual policy based recommendation.
https://dl.acm.org/doi/pdf/10.1145/3383313.3411544
3. 在搜索和推荐系统中消除偏见和增加公平性
Counteracting Bias and Increasing Fairness in Search and Recommender Systems
https://dl.acm.org/doi/pdf/10.1145/3383313.3411545
4. 推荐系统中的Bandits介绍
Introduction to Bandits in Recommender Systems.
https://dl.acm.org/doi/pdf/10.1145/3383313.3411547
5. 基于会话的推荐系统教程
Tutorial on Conversational Recommendation Systems
https://dl.acm.org/doi/pdf/10.1145/3383313.3411548
6. 推荐系统的特性工程教程
Tutorial: Feature Engineering for Recommender Systems
https://dl.acm.org/doi/abs/10.1145/3383313.3411543
最佳论文奖、最佳论文提名奖、最佳短文奖
(Best Long Paper)
渐进式分层提取(PLE): 一种用于个性化推荐的新型多任务学习(MTL)模型
Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations
https://dl.acm.org/doi/abs/10.1145/3383313.3412236
(Best Long Paper Runner-up)
利用性能估计来增强推荐集成
Exploiting Performance Estimates for Augmenting Recommendation Ensembles
https://dl.acm.org/doi/abs/10.1145/3383313.3412264
(Best Short Paper)
ADER: Adaptively Distilled Exemplar Replay Towards Continual Learning for Session-based Recommendation
ADER:自适应地蒸馏出Replay范例,以实现基于会话推荐的持续学习
https://dl.acm.org/doi/abs/10.1145/3383313.3412218
Long Papers 完整论文列表
Yoshifumi Seki, Takanori Maehara:
A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets. 4-12
Hanze Li, Scott Sanner, Kai Luo, Ga Wu:
A Ranking Optimization Approach to Latent Linear Critiquing for Conversational Recommender Systems. 13-22
Zhu Sun, Di Yu, Hui Fang, Jie Yang, Xinghua Qu, Jie Zhang, Cong Geng:
Are We Evaluating Rigorously? Benchmarking Recommendation for Reproducible Evaluation and Fair Comparison. 23-32
Chang Li, Haoyun Feng, Maarten de Rijke:
Cascading Hybrid Bandits: Online Learning to Rank for Relevance and Diversity. 33-42
Yin Zhang, Ziwei Zhu, Yun He, James Caverlee:
Content-Collaborative Disentanglement Representation Learning for Enhanced Recommendation. 43-52
Casper Hansen, Christian Hansen, Lucas Maystre, Rishabh Mehrotra, Brian Brost, Federico Tomasi, Mounia Lalmas:
Contextual and Sequential User Embeddings for Large-Scale Music Recommendation. 53-62
Xu He, Bo An, Yanghua Li, Haikai Chen, Qingyu Guo, Xin Li, Zhirong Wang:
Contextual User Browsing Bandits for Large-Scale Online Mobile Recommendation. 63-72
Tobias Schnabel, Paul N. Bennett:
Debiasing Item-to-Item Recommendations With Small Annotated Datasets. 73-81
Guy Aridor, Duarte Gonçalves, Shan Sikdar:
Deconstructing the Filter Bubble: User Decision-Making and Recommender Systems. 82-91
Yuta Saito:
Doubly Robust Estimator for Ranking Metrics with Post-Click Conversions. 92-100
Mesut Kaya, Derek G. Bridge, Nava Tintarev:
Ensuring Fairness in Group Recommendations by Rank-Sensitive Balancing of Relevance. 101-110
Gustavo Penha, Rodrygo L. T. Santos:
Exploiting Performance Estimates for Augmenting Recommendation Ensembles. 111-119
Liu Yang, Bo Liu, Leyu Lin, Feng Xia, Kai Chen, Qiang Yang:
Exploring Clustering of Bandits for Online Recommendation System. 120-129
Jing Lin, Weike Pan, Zhong Ming:
FISSA: Fusing Item Similarity Models with Self-Attention Networks for Sequential Recommendation. 130-139
Pigi Kouki, Ilias Fountalis, Nikolaos Vasiloglou, Xiquan Cui, Edo Liberty, Khalifeh Al Jadda:
From the lab to production: A case study of session-based recommendations in the home-improvement domain. 140-149
Huazheng Wang, Qian Zhao, Qingyun Wu, Shubham Chopra, Abhinav Khaitan, Hongning Wang:
Global and Local Differential Privacy for Collaborative Bandits. 150-159
Samarth Aggarwal, Rohin Garg, Abhilasha Sancheti, Bhanu Prakash Reddy Guda, Iftikhar Ahamath Burhanuddin:
Goal-driven Command Recommendations for Analysts. 160-169
James Neve, Ryan McConville:
ImRec: Learning Reciprocal Preferences Using Images. 170-179
Jesús Omar Álvarez Márquez, Jürgen Ziegler:
In-Store Augmented Reality-Enabled Product Comparison and Recommendation. 180-189
Jin Huang, Harrie Oosterhuis, Maarten de Rijke, Herke van Hoof:
Keeping Dataset Biases out of the Simulation: A Debiased Simulator for Reinforcement Learning based Recommender Systems. 190-199
Danyang Liu, Jianxun Lian, Shiyin Wang, Ying Qiao, Jiun-Hung Chen, Guangzhong Sun, Xing Xie:
KRED: Knowledge-Aware Document Representation for News Recommendations. 200-209
Xu He, Bo An, Yanghua Li, Haikai Chen, Rundong Wang, Xinrun Wang, Runsheng Yu, Xin Li, Zhirong Wang:
Learning to Collaborate in Multi-Module Recommendation via Multi-Agent Reinforcement Learning without Communication. 210-219
Darius Afchar, Romain Hennequin:
Making Neural Networks Interpretable with Attribution: Application to Implicit Signals Prediction. 220-229
Ahmed Rashed, Shayan Jawed, Lars Schmidt-Thieme, Andre Hintsches:
MultiRec: A Multi-Relational Approach for Unique Item Recommendation in Auction Systems. 230-239
Steffen Rendle, Walid Krichene, Li Zhang, John R. Anderson:
Neural Collaborative Filtering vs. Matrix Factorization Revisited. 240-248
Mawulolo K. Ameko, Miranda L. Beltzer, Lihua Cai, Mehdi Boukhechba, Bethany A. Teachman, Laura E. Barnes:
Offline Contextual Multi-armed Bandits for Mobile Health Interventions: A Case Study on Emotion Regulation. 249-258
Rocío Cañamares, Pablo Castells:
On Target Item Sampling in Offline Recommender System Evaluation. 259-268
Hongyan Tang, Junning Liu, Ming Zhao, Xudong Gong:
Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations. 269-278
Pan Li, Maofei Que, Zhichao Jiang, Yao Hu, Alexander Tuzhilin:
PURS: Personalized Unexpected Recommender System for Improving User Satisfaction. 279-288
Marialena Kyriakidi, Georgia Koutrika, Yannis E. Ioannidis:
Recommendations as Graph Explorations. 289-298
Panagiotis Symeonidis, Andrea Janes, Dmitry Chaltsev, Philip Giuliani, Daniel Morandini, Andreas Unterhuber, Ludovik Coba, Markus Zanker:
Recommending the Video to Watch Next: An Offline and Online Evaluation at YOUTV.de. 299-308
Théo Moins, Daniel Aloise, Simon J. Blanchard:
RecSeats: A Hybrid Convolutional Neural Network Choice Model for Seat Recommendations at Reserved Seating Venues. 309-317
Jiaxi Tang, Hongyi Wen, Ke Wang:
Revisiting Adversarially Learned Injection Attacks Against Recommender Systems. 318-327
Liwei Wu, Shuqing Li, Cho-Jui Hsieh, James Sharpnack:
SSE-PT: Sequential Recommendation Via Personalized Transformer. 328-337
Jin Peng Zhou, Zhaoyue Cheng, Felipe Perez, Maksims Volkovs:
TAFA: Two-headed Attention Fused Autoencoder for Context-Aware Recommendations. 338-347
Sami Khenissi, Mariem Boujelbene, Olfa Nasraoui:
Theoretical Modeling of the Iterative Properties of User Discovery in a Collaborative Filtering Recommender System. 348-357
Gourab K. Patro, Abhijnan Chakraborty, Ashmi Banerjee, Niloy Ganguly:
Towards Safety and Sustainability: Designing Local Recommendations for Post-pandemic World. 358-367
Bo-Wen Yuan, Yaxu Liu, Jui-Yang Hsia, Zhenhua Dong, Chih-Jen Lin:
Unbiased Ad Click Prediction for Position-aware Advertising Systems. 368-377
Masahiro Sato, Sho Takemori, Janmajay Singh, Tomoko Ohkuma:
Unbiased Learning for the Causal Effect of Recommendation. 378-387
Gustavo Penha, Claudia Hauff:
What does BERT know about books, movies and music? Probing BERT for Conversational Recommendation. 388-397
Tobias Schnabel, Gonzalo A. Ramos, Saleema Amershi:
"Who doesn't like dinosaurs?" Finding and Eliciting Richer Preferences for Recommendation. 398-407
Short Papers 完整论文列表
Fei Mi, Xiaoyu Lin, Boi Faltings:
ADER: Adaptively Distilled Exemplar Replay Towards Continual Learning for Session-based Recommendation. 408-413
Yagmur Gizem Cinar, Jean-Michel Renders:
Adaptive Pointwise-Pairwise Learning-to-Rank for Content-based Personalized Recommendation. 414-419
Walid Bendada, Guillaume Salha, Théo Bontempelli:
Carousel Personalization in Music Streaming Apps with Contextual Bandits. 420-425
Yixin Wang, Dawen Liang, Laurent Charlin, David M. Blei:
Causal Inference for Recommender Systems. 426-431
Denis Kotkov, Qian Zhao, Kati Launis, Mats Neovius:
ClusterExplorer: Enable User Control over Related Recommendations via Collaborative Filtering and Clustering. 432-437
Francisco J. Peña, Diarmuid O'Reilly-Morgan, Elias Z. Tragos, Neil Hurley, Erika Duriakova, Barry Smyth, Aonghus Lawlor:
Combining Rating and Review Data by Initializing Latent Factor Models with Topic Models for Top-N Recommendation. 438-443
Marlesson R. O. Santana, Luckeciano C. Melo, Fernando H. F. Camargo, Bruno Brandão, Anderson Soares, Renan M. Oliveira, Sandor Caetano:
Contextual Meta-Bandit for Recommender Systems Selection. 444-449
Konstantina Christakopoulou, Madeleine Traverse, Trevor Potter, Emma Marriott, Daniel Li, Chris Haulk, Ed H. Chi, Minmin Chen:
Deconfounding User Satisfaction Estimation from Response Rate Bias. 450-455
Dalin Guo, Sofia Ira Ktena, Pranay Kumar Myana, Ferenc Huszar, Wenzhe Shi, Alykhan Tejani, Michael Kneier, Sourav Das:
Deep Bayesian Bandits: Exploring in Online Personalized Recommendations. 456-461
Kosetsu Tsukuda, Masataka Goto:
Explainable Recommendation for Repeat Consumption. 462-467
Oren Barkan, Yonatan Fuchs, Avi Caciularu, Noam Koenigstein:
Explainable Recommendations via Attentive Multi-Persona Collaborative Filtering. 468-473
Andres Ferraro, Dietmar Jannach, Xavier Serra:
Exploring Longitudinal Effects of Session-based Recommendations. 474-479
Jakim Berndsen, Barry Smyth, Aonghus Lawlor:
Fit to Run: Personalised Recommendations for Marathon Training. 480-485
Dmitri Goldenberg, Javier Albert, Lucas Bernardi, Pablo Estevez:
Free Lunch! Retrospective Uplift Modeling for Dynamic Promotions Recommendation within ROI Constraints. 486-491
Baptiste Barreau, Laurent Carlier:
History-Augmented Collaborative Filtering for Financial Recommendations. 492-497
Chu-Jen Shao, Hao-Ming Fu, Pu-Jen Cheng:
Improving One-class Recommendation with Multi-tasking on Various Preference Intensities. 498-502
Andrés Villa, Vladimir Araujo, Francisca Cattan, Denis Parra:
Interpretable Contextual Team-aware Item Recommendation: Application in Multiplayer Online Battle Arena Games. 503-508
Siyi Liu, Yujia Zheng:
Long-tail Session-based Recommendation. 509-514
Sung Min Cho, Eunhyeok Park, Sungjoo Yoo:
MEANTIME: Mixture of Attention Mechanisms with Multi-temporal Embeddings for Sequential Recommendation. 515-520
Caojin Zhang, Yicun Liu, Yuanpu Xie, Sofia Ira Ktena, Alykhan Tejani, Akshay Gupta, Pranay Kumar Myana, Deepak Dilipkumar, Suvadip Paul, Ikuhiro Ihara, Prasang Upadhyaya, Ferenc Huszar, Wenzhe Shi:
Model Size Reduction Using Frequency Based Double Hashing for Recommender Systems. 521-526
Leyla Mirvakhabova, Evgeny Frolov, Valentin Khrulkov, Ivan V. Oseledets, Alexander Tuzhilin:
Performance of Hyperbolic Geometry Models on Top-N Recommendation Tasks. 527-532
Alessandro B. Melchiorre, Eva Zangerle, Markus Schedl:
Personality Bias of Music Recommendation Algorithms. 533-538
Ciara Feely, Brian Caulfield, Aonghus Lawlor, Barry Smyth:
Providing Explainable Race-Time Predictions and Training Plan Recommendations to Marathon Runners. 539-544
Janhavi Dahihande, Akshay Jaiswal, Akshay Anil Pagar, Ajinkya Thakare, Magdalini Eirinaki, Iraklis Varlamis:
Reducing energy waste in households through real-time recommendations. 545-550
Ziwei Zhu, Yun He, Yin Zhang, James Caverlee:
Unbiased Implicit Recommendation and Propensity Estimation via Combinational Joint Learning. 551-556
Tushar Shandhilya, Nisheeth Srivastava:
Using conceptual incongruity as a basis for making recommendations. 557-561
[1]
[2] 完整列表:https://dblp.org/db/conf/recsys/recsys2020.html
以上是关于RecSys2020-推荐系统顶会论文大集锦的主要内容,如果未能解决你的问题,请参考以下文章
学习推荐系统必看的10篇RecSys论文,收藏!(官方推荐)
推荐系统近期必读的6篇顶会WWW2020推荐系统相关论文-Part3