RecSys2020推荐系统论文集锦

Posted 机器学习与推荐算法

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了RecSys2020推荐系统论文集锦相关的知识,希望对你有一定的参考价值。

嘿,记得给“机器学习与推荐算法”添加星标

第14届推荐人自己的年会RecSys已在9月22日到26日在线上举行。大会围绕着推荐系统相关问题进行了3场KeyNotes,5场Tutorials,接收了41篇长文,26篇短文。

通过对主题演讲以及教程的总结发现,此次大会主要聚焦在了推荐系统中的Bias问题以及对话推荐系统、对抗机器学习在推荐中的应用等。
主题演讲为以下3个:
  • 4 Reasons Why Social Media Make Us Vulnerable to Manipulation.

    by 

  • Bias in Search and Recommender Systems.

    by 

  • "You Really Get Me": Conversational AI Agents That Can Truly Understand and Help Users. 

    by Michelle Zhou.

大会教程为以下6个:

  • Adversarial Learning for Recommendation: Applications for Security and Generative Tasks - Concept to Code.

    by Vito Walter Anelli et al.

  • Bayesian Value Based Recommendation: A modelling based alternative to proxy and counterfactual policy based recommendation.

    by David Rohde et al.

  • Counteracting Bias and Increasing Fairness in Search and Recommender Systems. 

    by Ruoyuan Gao et al.

  • Introduction to Bandits in Recommender Systems.

    by 

  • Tutorial on Conversational Recommendation Systems.

    by Zuohui Fu et al.

  • Tutorial: Feature Engineering for Recommender Systems.

    by Benedikt Schifferer et al.

另外,大会揭晓了今年的最佳论文奖、最佳论文提名奖、最佳短文奖。具体标题及单位如下:

  • Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations
    by H. Tang, J. Liu, M. Zhao, X. Gong (Best Long Paper)

  • Exploiting Performance Estimates for Augmenting Recommendation Ensembles
    by  G. Penha, R. L. T. Santos  ( Best Long Paper Runner-up )
  • ADER: Adaptively Distilled Exemplar Replay Towards Continual Learning for Session-based Recommendation
    by  F. Mi, X. Lin, B. Faltings  ( Best Short Paper )

最后,小编为大家收集整理了部分相关主题的论文。其中对论文的总结发现,除了以下列出的大类外,还有一些非常有意思的工作,比如对可复现性和公平对比的思考、多智能体强化学习与推荐系统的结合、对矩阵分解和神经协同过滤方法的思考等等。

一. 序列推荐

  • From the lab to production: A case study of session-based recommendations in the home-improvement domain.

  • ADER: Adaptively Distilled Exemplar Replay Towards Continual Learning for Session-based Recommendation.

  • Exploring Longitudinal Effects of Session-based Recommendations.

  • Long-tail Session-based Recommendation.

  • Context-aware Graph Embedding for Session-based News Recommendation.

  • Investigating the Impact of Audio States & Transitions for Track Sequencing in Music Streaming Sessions.

二. 可解释性推荐

  • Explainable Recommendation for Repeat Consumption.

  • Explainable Recommendations via Attentive Multi-Persona Collaborative Filtering.

  • Providing Explainable Race-Time Predictions and Training Plan Recommendations to Marathon Runners.

三. 无偏的和公平的推荐

  • Bias in Search and Recommender Systems

  • Debiasing Item-to-Item Recommendations With Small Annotated Datasets.

  • Keeping Dataset Biases out of the Simulation: A Debiased Simulator for Reinforcement Learning based Recommender Systems.

  • Unbiased Ad Click Prediction for Position-aware Advertising Systems.

  • Unbiased Learning for the Causal Effect of Recommendation.

  • Unbiased Implicit Recommendation and Propensity Estimation via Combinational Joint Learning.

  • The Connection Between Popularity Bias, Calibration, and Fairness in Recommendation.

  • Counteracting Bias and Increasing Fairness in Search and Recommender Systems.

  • Counteracting Bias and Increasing Fairness in Search and Recommender Systems.

  • The Connection Between Popularity Bias, Calibration, and Fairness in Recommendation.

  • Fairness-aware Recommendation with librec-auto.

  • Ensuring Fairness in Group Recommendations by Rank-Sensitive Balancing of Relevance.

更多接收的论文可以访问: https://dblp.org/db/conf/recsys/recsys2020.html

推荐阅读




喜欢的话点个在看吧

以上是关于RecSys2020推荐系统论文集锦的主要内容,如果未能解决你的问题,请参考以下文章

围观RecSys2020 | 推荐系统顶会说了啥?(附论文打包下载)

学习推荐系统必看的10篇RecSys论文,收藏!(官方推荐)

2020推荐系统大会(RecSys2020) 亮点

推荐系统一个吹NB的方法

推荐系统一个吹NB的方法

推荐系统“必读”文献