机器学习算法:cart剪枝

Posted 黑马程序员官方

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习算法:cart剪枝相关的知识,希望对你有一定的参考价值。

学习目标

  • 了解为什么要进行cart剪枝
  • 知道常用的cart剪枝方法

1 为什么要剪枝

 

  • 图形描述

    • 横轴表示在决策树创建过程中树的结点总数,纵轴表示决策树的预测精度。
    • 实线显示的是决策树在训练集上的精度,虚线显示的则是在一个独立的测试集上测量出来的精度。
    • 随着树的增长,在训练样集上的精度是单调上升的, 然而在独立的测试样例上测出的精度先上升后下降。
  • 出现这种情况的原因:

    • 原因1:噪声、样本冲突,即错误的样本数据。
    • 原因2:特征即属性不能完全作为分类标准。
    • 原因3:巧合的规律性,数据量不够大。

2 常用的减枝方法

2.1 预剪枝

(1)每一个结点所包含的最小样本数目,例如10,则该结点总样本数小于10时,则不再分;

(2)指定树的高度或者深度,例如树的最大深度为4;

(3)指定结点的熵小于某个值,不再划分。随着树的增长, 在训练样集上的精度是单调上升的, 然而在独立的测试样例上测出的精度先上升后下降

2.2 后剪枝:

后剪枝,在已生成过拟合决策树上进行剪枝,可以得到简化版的剪枝决策树。


3 小结

  • 剪枝原因【了解】
    • 噪声、样本冲突,即错误的样本数据
    • 特征即属性不能完全作为分类标准
    • 巧合的规律性,数据量不够大。
  • 常用剪枝方法【知道】
    • 预剪枝
      • 在构建树的过程中,同时剪枝
        • 限制节点最小样本数
        • 指定数据高度
        • 指定熵值的最小值
    • 后剪枝
      • 把一棵树,构建完成之后,再进行从下往上的剪枝

以上是关于机器学习算法:cart剪枝的主要内容,如果未能解决你的问题,请参考以下文章

机器学习决策树算法cart剪枝

机器学习算法决策树-4 CART算法和CHAID算法

机器学习笔记之三CART 分类与回归树

机器学习决策树理论第二卷

机器学习-决策树算法(ID3C4.5和CART)

机器学习——决策树(下)算法实现