[深度学习][原创]让yolov6-0.1.0支持yolov5的txt读取数据集模式
Posted FL1623863129
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[深度学习][原创]让yolov6-0.1.0支持yolov5的txt读取数据集模式相关的知识,希望对你有一定的参考价值。
美团出了一个yolov6框架目前看来很不错,由于没出来多久,有很多没有完善。今天特意训练自己的数据集发现这个框架只能是按照这个模式摆放:
custom_dataset
├── images
│ ├── train
│ │ ├── train0.jpg
│ │ └── train1.jpg
│ ├── val
│ │ ├── val0.jpg
│ │ └── val1.jpg
│ └── test
│ ├── test0.jpg
│ └── test1.jpg
└── labels
├── train
│ ├── train0.txt
│ └── train1.txt
├── val
│ ├── val0.txt
│ └── val1.txt
└── test
├── test0.txt
└── test1.txt
而我更喜欢yolov5的模式,当然yolov5也是支持上面摆放模式。
images-
1.jpg
2.jpg
......
labels-
1.txt
2.txt
.......
然后把分割数据集放txt里面
train.txt
/home/fut/data/images/1.jpg
/home/fut/data/images/2.jpg
....
val.txt
/home/fut/data/images/6.jpg
/home/fut/data/images/7.jpg
....
在配置文件这么配置:
train: myproj/config/train.txt
val: myproj/config/val.txt
nc: 2
# whether it is coco dataset, only coco dataset should be set to True.
is_coco: False
# class names
names: ['dog','cat']
这样就不用每次切割四个文件夹了。话不多说开始改代码,我们打开YOLOv6-0.1.0/yolov6/data/datasets.py修改
def get_imgs_labels(self, img_dir):这个函数加载模式即可。下面是这个函数修改后完整代码
def get_imgs_labels(self, img_dir):
NUM_THREADS = min(8, os.cpu_count())
if os.path.isdir(img_dir):
valid_img_record = osp.join(
osp.dirname(img_dir), "." + osp.basename(img_dir) + ".json"
)
img_paths = glob.glob(osp.join(img_dir, "*"), recursive=True)
img_paths = sorted(
p for p in img_paths if p.split(".")[-1].lower() in IMG_FORMATS
)
assert img_paths, f"No images found in img_dir."
else:
with open(img_dir,'r') as f:
img_paths = f.read().rstrip('\\n').split('\\n')
valid_img_record = os.path.dirname(img_dir)+os.sep+'.'+osp.basename(img_dir)[:-4] + ".json"
img_hash = self.get_hash(img_paths)
if osp.exists(valid_img_record):
with open(valid_img_record, "r") as f:
cache_info = json.load(f)
if "image_hash" in cache_info and cache_info["image_hash"] == img_hash:
img_info = cache_info["information"]
else:
self.check_images = True
else:
self.check_images = True
# check images
if self.check_images and self.main_process:
img_info =
nc, msgs = 0, [] # number corrupt, messages
LOGGER.info(
f"self.task: Checking formats of images with NUM_THREADS process(es): "
)
with Pool(NUM_THREADS) as pool:
pbar = tqdm(
pool.imap(TrainValDataset.check_image, img_paths),
total=len(img_paths),
)
for img_path, shape_per_img, nc_per_img, msg in pbar:
if nc_per_img == 0: # not corrupted
img_info[img_path] = "shape": shape_per_img
nc += nc_per_img
if msg:
msgs.append(msg)
pbar.desc = f"nc image(s) corrupted"
pbar.close()
if msgs:
LOGGER.info("\\n".join(msgs))
cache_info = "information": img_info, "image_hash": img_hash
# save valid image paths.
with open(valid_img_record, "w") as f:
json.dump(cache_info, f)
# # check and load anns
# label_dir = osp.join(
# osp.dirname(osp.dirname(img_dir)), "coco", osp.basename(img_dir)
# )
# assert osp.exists(label_dir), f"label_dir is an invalid directory path!"
img_paths = list(img_info.keys())
label_dir = os.path.dirname(img_paths[0]).replace('images', 'labels')
label_paths = sorted(
osp.join(label_dir, osp.splitext(osp.basename(p))[0] + ".txt")
for p in img_paths
)
label_hash = self.get_hash(label_paths)
if "label_hash" not in cache_info or cache_info["label_hash"] != label_hash:
self.check_labels = True
if self.check_labels:
cache_info["label_hash"] = label_hash
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number corrupt, messages
LOGGER.info(
f"self.task: Checking formats of labels with NUM_THREADS process(es): "
)
with Pool(NUM_THREADS) as pool:
pbar = pool.imap(
TrainValDataset.check_label_files, zip(img_paths, label_paths)
)
pbar = tqdm(pbar, total=len(label_paths)) if self.main_process else pbar
for (
img_path,
labels_per_file,
nc_per_file,
nm_per_file,
nf_per_file,
ne_per_file,
msg,
) in pbar:
if nc_per_file == 0:
img_info[img_path]["labels"] = labels_per_file
else:
img_info.pop(img_path)
nc += nc_per_file
nm += nm_per_file
nf += nf_per_file
ne += ne_per_file
if msg:
msgs.append(msg)
if self.main_process:
pbar.desc = f"nf label(s) found, nm label(s) missing, ne label(s) empty, nc invalid label files"
if self.main_process:
pbar.close()
with open(valid_img_record, "w") as f:
json.dump(cache_info, f)
if msgs:
LOGGER.info("\\n".join(msgs))
if nf == 0:
LOGGER.warning(
f"WARNING: No labels found in osp.dirname(self.img_paths[0]). "
)
if self.task.lower() == "val":
if self.data_dict.get("is_coco", False): # use original json file when evaluating on coco dataset.
assert osp.exists(self.data_dict["anno_path"]), "Eval on coco dataset must provide valid path of the annotation file in config file: data/coco.yaml"
else:
assert (
self.class_names
), "Class names is required when converting labels to coco format for evaluating."
save_dir = osp.join(osp.dirname(osp.dirname(img_dir)), "annotations")
if not osp.exists(save_dir):
os.mkdir(save_dir)
save_path = osp.join(
save_dir, "instances_" + osp.basename(img_dir) + ".json"
)
TrainValDataset.generate_coco_format_labels(
img_info, self.class_names, save_path
)
img_paths, labels = list(
zip(
*[
(
img_path,
np.array(info["labels"], dtype=np.float32)
if info["labels"]
else np.zeros((0, 5), dtype=np.float32),
)
for img_path, info in img_info.items()
]
)
)
self.img_info = img_info
LOGGER.info(
f"self.task: Final numbers of valid images: len(img_paths)/ labels: len(labels). "
)
return img_paths, labels
以上是关于[深度学习][原创]让yolov6-0.1.0支持yolov5的txt读取数据集模式的主要内容,如果未能解决你的问题,请参考以下文章
[深度学习][原创]一个可以将yolo txt格式转成coco json傻瓜式操作教程