youcans 的 OpenCV 例程200篇154. 边缘检测之 Canny 算子

Posted 小白YouCans

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了youcans 的 OpenCV 例程200篇154. 边缘检测之 Canny 算子相关的知识,希望对你有一定的参考价值。

欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列,持续更新中
欢迎关注 『youcans 的 OpenCV学习课』 系列,持续更新中


【youcans 的 OpenCV 例程200篇】154. 边缘检测之 Canny 算子


2.7 Canny 边缘检测算法

Canny 算法希望在提高边缘的敏感性的同时抑制噪声, 具体而言包括三个基本目标:

  • 错误率低,对边缘的错判率、漏判率低;
  • 定位性能好,检测的边缘点尽可能接近实际边缘的中心;
  • 单一边缘有且应当只有一个准确的响应 ,并尽可能抑制虚假边缘。

Canny 算法的本质是从数学上表达了这三个准则,并试图得到最优解。Canny 算法使用四个指数函数的线性组合形成的最佳边缘算子,可以由高斯函数的一阶导数来近似。

Canny 边缘检测算法是目前最优秀和最流行的边缘检测算法之一。算法不容易受噪声影响,能够识别图像中的弱边缘和强边缘,并能结合强弱边缘的位置关系给出图像整体的边缘信息。但是 Canny 算法编程复杂、运算较慢。

Canny 算法的基本步骤为:

(1)使用高斯滤波对图像进行平滑;

用二维高斯核与灰度图像进行卷积,实现平滑滤波:
G ( x , y ) = e − ( x 2 + y 2 ) / 2 σ 2 f s ( x , y ) = G ( x , y ) ⋆ f ( x , y ) G(x,y) = e^- (x^2 + y^2) / 2 \\sigma ^2 \\\\ f_s(x,y) = G(x,y) \\star f(x,y) G(x,y)=e(x2+y2)/2σ2fs(x,y)=G(x,y)f(x,y)
(2)用一阶有限差分计算梯度幅值和方向;

梯度向量的幅度 M 和角度 α \\alpha α 为:
M ( x , y ) = ∣ ∣ ∇ f s ∣ ∣ = g x 2 + g y 2 α ( x , y ) = a r c t a n [ g y / g x ] M(x,y) = ||\\nabla f_s|| = \\sqrt g_x^2 + g_y^2 \\\\ \\alpha (x,y) = arctan[g_y / g_x] M(x,y)=fs=gx2+gy2 α(x,y)=arctan[gy/gx]
具体应用中,可以采用 Sobel 算子、Prewitt算子、Roberts算子等进行梯度幅值的计算。

(3)对梯度幅值进行非极大值抑制(NMS);

为了实现单一边缘仅有唯一响应,沿着梯度方向寻找像素点的局部最大值, 将局部最大值之外的所有梯度值抑制为 0,剔除非边缘的像素点。

(4)用双阈值处理和连通性分析来检测和连接边缘。

应用双阈值 TH、TL 划分强边缘和弱边缘。将边缘处的梯度幅值与阈值比较:如果大于 TH则标记为强边缘,如果在 TL 与 TH 之间则标记为弱边缘,如果小于 TL 则被抛弃。

OpenCV 也提供了函数 cv.Canny 实现 Canny 边缘检测算子。

函数说明:

cv.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]]) → edges

参数说明:

  • image:输入图像,8-bit 灰度图像,不适用彩色图像
  • edges:输出边缘图像,8-bit 单通道图像,大小与输入图像相同
  • threshold1:第一阈值 TL
  • threshold2:第二阈值 TH
  • apertureSize:Sobel 卷积核的孔径,可选项,默认值 3
  • L2gradient: 计算图像梯度幅值 标志符,默认值为 True 表示 L2 法,False 表示 L1 法

注意事项:

  • 阈值 TL 用于边缘连接,阈值 TH 用于控制强边元的初值,推荐选择阈值比为 1:2~1:3。

例程 11.8:Canny 边缘检测算法

    # 11.8 Canny 边缘检测算子
    img = cv2.imread("../images/imgLena.tif", flags=0)  # flags=0 读取为灰度图像

    # 高斯核低通滤波器,sigmaY 缺省时 sigmaY=sigmaX
    kSize = (5, 5)
    imgGauss1 = cv2.GaussianBlur(img, kSize, sigmaX=1.0)  # sigma=1.0
    imgGauss2 = cv2.GaussianBlur(img, kSize, sigmaX=10.0)  # sigma=2.0

    # 高斯差分算子 (Difference of Gaussian)
    imgDoG = imgGauss2 - imgGauss1  # sigma=1.0, 10.0

    # Canny 边缘检测, kSize 为高斯核大小,t1,t2为阈值大小
    t1, t2 = 50, 150
    imgCanny = cv2.Canny(imgGauss1, t1, t2)

    plt.figure(figsize=(10, 6))
    plt.subplot(131), plt.title("Origin"), plt.imshow(img, cmap='gray'), plt.axis('off')
    plt.subplot(132), plt.title("DoG"), plt.imshow(imgDoG, cmap='gray'), plt.axis('off')
    plt.subplot(133), plt.title("Canny"), plt.imshow(imgCanny, cmap='gray'), plt.axis('off')
    plt.tight_layout()
    plt.show()


(本节完)


版权声明:

youcans@xupt 原创作品,转载必须标注原文链接:(https://blog.csdn.net/youcans/article/details/124092258)

Copyright 2022 youcans, XUPT
Crated:2022-4-10


欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列,持续更新中
欢迎关注 『youcans 的 OpenCV学习课』 系列,持续更新中

【youcans 的 OpenCV 例程200篇】01. 图像的读取(cv2.imread)
【youcans 的 OpenCV 例程200篇】02. 图像的保存(cv2.imwrite)
【youcans 的 OpenCV 例程200篇】03. 图像的显示(cv2.imshow)
【youcans 的 OpenCV 例程200篇】04. 用 matplotlib 显示图像(plt.imshow)
【youcans 的 OpenCV 例程200篇】05. 图像的属性(np.shape)
【youcans 的 OpenCV 例程200篇】06. 像素的编辑(img.itemset)
【youcans 的 OpenCV 例程200篇】07. 图像的创建(np.zeros)
【youcans 的 OpenCV 例程200篇】08. 图像的复制(np.copy)
【youcans 的 OpenCV 例程200篇】09. 图像的裁剪(cv2.selectROI)
【youcans 的 OpenCV 例程200篇】10. 图像的拼接(np.hstack)
【youcans 的 OpenCV 例程200篇】11. 图像通道的拆分(cv2.split)
【youcans 的 OpenCV 例程200篇】12. 图像通道的合并(cv2.merge)
【youcans 的 OpenCV 例程200篇】13. 图像的加法运算(cv2.add)
【youcans 的 OpenCV 例程200篇】14. 图像与标量相加(cv2.add)
【youcans 的 OpenCV 例程200篇】15. 图像的加权加法(cv2.addWeight)
【youcans 的 OpenCV 例程200篇】16. 不同尺寸的图像加法
【youcans 的 OpenCV 例程200篇】17. 两张图像的渐变切换
【youcans 的 OpenCV 例程200篇】18. 图像的掩模加法
【youcans 的 OpenCV 例程200篇】19. 图像的圆形遮罩
【youcans 的 OpenCV 例程200篇】20. 图像的按位运算
【youcans 的 OpenCV 例程200篇】21. 图像的叠加
【youcans 的 OpenCV 例程200篇】22. 图像添加非中文文字
【youcans 的 OpenCV 例程200篇】23. 图像添加中文文字
【youcans 的 OpenCV 例程200篇】24. 图像的仿射变换
【youcans 的 OpenCV 例程200篇】25. 图像的平移
【youcans 的 OpenCV 例程200篇】26. 图像的旋转(以原点为中心)
【youcans 的 OpenCV 例程200篇】27. 图像的旋转(以任意点为中心)
【youcans 的 OpenCV 例程200篇】28. 图像的旋转(直角旋转)
【youcans 的 OpenCV 例程200篇】29. 图像的翻转(cv2.flip)
【youcans 的 OpenCV 例程200篇】30. 图像的缩放(cv2.resize)
【youcans 的 OpenCV 例程200篇】31. 图像金字塔(cv2.pyrDown)
【youcans 的 OpenCV 例程200篇】32. 图像的扭变(错切)
【youcans 的 OpenCV 例程200篇】33. 图像的复合变换
【youcans 的 OpenCV 例程200篇】34. 图像的投影变换
【youcans 的 OpenCV 例程200篇】35. 图像的投影变换(边界填充)
【youcans 的 OpenCV 例程200篇】36. 直角坐标与极坐标的转换
【youcans 的 OpenCV 例程200篇】37. 图像的灰度化处理和二值化处理
【youcans 的 OpenCV 例程200篇】38. 图像的反色变换(图像反转)
【youcans 的 OpenCV 例程200篇】39. 图像灰度的线性变换
【youcans 的 OpenCV 例程200篇】40. 图像分段线性灰度变换
【youcans 的 OpenCV 例程200篇】41. 图像的灰度变换(灰度级分层)
【youcans 的 OpenCV 例程200篇】42. 图像的灰度变换(比特平面分层)
【youcans 的 OpenCV 例程200篇】43. 图像的灰度变换(对数变换)
【youcans 的 OpenCV 例程200篇】44. 图像的灰度变换(伽马变换)
【youcans 的 OpenCV 例程200篇】45. 图像的灰度直方图
【youcans 的 OpenCV 例程200篇】46. 直方图均衡化
【youcans 的 OpenCV 例程200篇】47. 图像增强—直方图匹配
【youcans 的 OpenCV 例程200篇】48. 图像增强—彩色直方图匹配
【youcans 的 OpenCV 例程200篇】49. 图像增强—局部直方图处理
【youcans 的 OpenCV 例程200篇】50. 图像增强—直方图统计量图像增强
【youcans 的 OpenCV 例程200篇】51. 图像增强—直方图反向追踪
【youcans 的 OpenCV 例程200篇】52. 图像的相关与卷积运算
【youcans 的 OpenCV 例程200篇】53. Scipy 实现图像二维卷积
【youcans 的 OpenCV 例程200篇】54. OpenCV 实现图像二维卷积
【youcans 的 OpenCV 例程200篇】55. 可分离卷积核
【youcans 的 OpenCV 例程200篇】56. 低通盒式滤波器
【youcans 的 OpenCV 例程200篇】57. 低通高斯滤波器
【youcans 的 OpenCV 例程200篇】58. 非线性滤波—中值滤波
【youcans 的 OpenCV 例程200篇】59. 非线性滤波—双边滤波
【youcans 的 OpenCV 例程200篇】60. 非线性滤波—联合双边滤波
【youcans 的 OpenCV 例程200篇】61. 导向滤波(Guided filter)
【youcans 的 OpenCV 例程200篇】62. 图像锐化——钝化掩蔽
【youcans 的 OpenCV 例程200篇】63. 图像锐化——Laplacian 算子
【youcans 的 OpenCV 例程200篇】64. 图像锐化——Sobel 算子
【youcans 的 OpenCV 例程200篇】65. 图像锐化——Scharr 算子
【youcans 的 OpenCV 例程200篇】66. 图像滤波之低通/高通/带阻/带通
【youcans 的 OpenCV 例程200篇】67. 空间域图像增强的综合应用
【youcans 的 OpenCV 例程200篇】68. 空间域图像增强的综合应用
【youcans 的 OpenCV 例程200篇】69. 连续非周期信号的傅立叶系数
【youcans 的 OpenCV 例程200篇】70. 一维连续函数的傅里叶变换
【youcans 的 OpenCV 例程200篇】71. 连续函数的取样
【youcans 的 OpenCV 例程200篇】72. 一维离散傅里叶变换
【youcans 的 OpenCV 例程200篇】73. 二维连续傅里叶变换
【youcans 的 OpenCV 例程200篇】74. 图像的抗混叠
【youcans 的 OpenCV 例程200篇】75. Numpy 实现图像傅里叶变换
【youcans 的 OpenCV 例程200篇】76. OpenCV 实现图像傅里叶变换
【youcans 的 OpenCV 例程200篇】77. OpenCV 实现快速傅里叶变换
【youcans 的 OpenCV 例程200篇】78. 频率域图像滤波基础
【youcans 的 OpenCV 例程200篇】79. 频率域图像滤波的基本步骤
【youcans 的 OpenCV 例程200篇】80. 频率域图像滤波详细步骤
【youcans 的 OpenCV 例程200篇】81. 频率域高斯低通滤波器
【youcans 的 OpenCV 例程200篇】82. 频率域巴特沃斯低通滤波器
【youcans 的 OpenCV 例程200篇】83. 频率域低通滤波:印刷文本字符修复
【youcans 的 OpenCV 例程200篇】84. 由低通滤波器得到高通滤波器
【youcans 的 OpenCV 例程200篇】85. 频率域高通滤波器的应用
【youcans 的 OpenCV 例程200篇】86. 频率域滤波应用:指纹图像处理
【youcans 的 OpenCV 例程200篇】87. 频率域钝化掩蔽
【youcans 的 OpenCV 例程200篇】88. 频率域拉普拉斯高通滤波
【youcans 的 OpenCV 例程200篇】89. 带阻滤波器的传递函数
【youcans 的 OpenCV 例程200篇】90. 频率域陷波滤波器
【youcans 的 OpenCV 例程200篇】91. 高斯噪声、瑞利噪声、爱尔兰噪声
【youcans 的 OpenCV 例程200篇】92. 指数噪声、均匀噪声、椒盐噪声
【youcans 的 OpenCV 例程200篇】93. 噪声模型的直方图
【youcans 的 OpenCV 例程200篇】94. 算术平均滤波器
【youcans 的 OpenCV 例程200篇】95. 几何均值滤波器
【youcans 的 OpenCV 例程200篇】96. 谐波平均滤波器
【youcans 的 OpenCV 例程200篇】97. 反谐波平均滤波器
【youcans 的 OpenCV 例程200篇】98. 统计排序滤波器
【youcans 的 OpenCV 例程200篇】99. 修正阿尔法均值滤波器
【youcans 的 OpenCV 例程200篇】100. 自适应局部降噪滤波器
【youcans 的 OpenCV 例程200篇】101. 自适应中值滤波器
【youcans 的 OpenCV 例程200篇】102. 陷波带阻滤波器的传递函数
【youcans 的 OpenCV 例程200篇】103. 陷波带阻滤波器消除周期噪声干扰
【youcans 的 OpenCV 例程200篇】104. 运动模糊退化模型
【youcans 的 OpenCV 例程200篇】105. 湍流模糊退化模型
【youcans 的 OpenCV 例程200篇】106. 退化图像的逆滤波
【youcans 的 OpenCV 例程200篇】107. 退化图像的维纳滤波
【youcans 的 OpenCV 例程200篇】108. 约束最小二乘方滤波
【youcans 的 OpenCV 例程200篇】109. 几何均值滤波
【youcans 的 OpenCV 例程200篇】110. 投影和雷登变换
【youcans 的 OpenCV 例程200篇】111. 雷登变换反投影重建图像
【youcans 的 OpenCV 例程200篇】112. 滤波反投影重建图像
【youcans 的 OpenCV 例程200篇】113. 形态学操作之腐蚀
【youcans 的 OpenCV 例程200篇】114. 形态学操作之膨胀
【youcans 的 OpenCV 例程200篇】115. 形态学操作之开运算
【youcans 的 OpenCV 例程200篇】116. 形态学操作之闭运算
【youcans 的 OpenCV 例程200篇】117. 形态学操作之顶帽运算
【youcans 的 OpenCV 例程200篇】118. 形态学操作之底帽运算
【youcans 的 OpenCV 例程200篇】119. 图像的形态学梯度
【youcans 的 OpenCV 例程200篇】120. 击中-击不中变换
【youcans 的 OpenCV 例程200篇】121. 击中-击不中用于特征识别
【youcans 的 OpenCV 例程200篇】122. 形态算法之边界提取
【youcans 的 OpenCV 例程200篇】123. 形态算法之孔洞填充
【youcans 的 OpenCV 例程200篇】124. 孔洞填充的泛洪算法
【youcans 的 OpenCV 例程200篇】125. 形态算法之提取连通分量
【youcans 的 OpenCV 例程200篇】126. 形态算法之凸壳
【youcans 的 OpenCV 例程200篇】127. 形态算法之细化
【youcans 的 OpenCV 例程200篇】128. 形态算法之骨架 (skimage)
【youcans 的 OpenCV 例程200篇】129. 形态算法之骨架 (重建开运算)
【youcans 的 OpenCV 例程200篇】130. 形态学之提取水平和垂直线
【youcans 的 OpenCV 例程200篇】131. 形态学重建之竖线字符提取
【youcans 的 OpenCV 例程200篇】132. 形态学重建之孔洞填充算法
【youcans 的 OpenCV 例程200篇】133. 形态学重建之边界清除
【youcans 的 OpenCV 例程200篇】134. 形态学重建之细胞计数
【youcans 的 OpenCV 例程200篇】135. 形态学重建之粒度测定
【youcans 的 OpenCV 例程200篇】136. 灰度腐蚀和灰度膨胀
【youcans 的 OpenCV 例程200篇】137. 灰度开运算和灰度闭运算原理
【youcans 的 OpenCV 例程200篇】138. 灰度开运算和灰度闭运算
【youcans 的 OpenCV 例程200篇】139. 灰度顶帽变换校正阴影
【youcans 的 OpenCV 例程200篇】140. 灰度底帽变换校正光照
【youcans 的 OpenCV 例程200篇】141. 灰度底帽变换的三维地形图
【youcans 的 OpenCV 例程200篇】142. 基于灰度形态学的图像平滑
【youcans 的 OpenCV 例程200篇】143. 基于灰度形态学的粒度测定
【youcans 的 OpenCV 例程200篇】144. 基于灰度形态学的纹理分割
【youcans 的 OpenCV 例程200篇】145. 形态学之边缘和角点检测
【youcans 的 OpenCV 例程200篇】146. 基于灰度形态学的复杂背景图像重建
【youcans 的 OpenCV 例程200篇】147. 图像分割之孤立点检测
【youcans 的 OpenCV 例程200篇】148. 图像分割之线检测
【youcans 的 OpenCV 例程200篇】149. 图像分割之边缘模型
【youcans 的 OpenCV 例程200篇】150. 边缘检测梯度算子
【youcans 的 OpenCV 例程200篇】151. 边缘检测中的平滑处理
【youcans 的 OpenCV 例程200篇】152. 边缘检测之 LoG 算子
【youcans 的 OpenCV 例程200篇】153. 边缘检测之 DoG 算子
【youcans 的 OpenCV 例程200篇】154. 边缘检测之 Canny 算子

超强干货来袭 云风专访:近40年码龄,通宵达旦的技术人生

以上是关于youcans 的 OpenCV 例程200篇154. 边缘检测之 Canny 算子的主要内容,如果未能解决你的问题,请参考以下文章

youcans 的 OpenCV 例程200篇182.基于形态学梯度的分水岭算法

youcans 的 OpenCV 例程200篇结束语

youcans的OpenCV例程200篇总目录

youcans 的 OpenCV 例程200篇179.图像分割之 GrabCut 图割法(掩模图像)

youcans 的 OpenCV 例程200篇201. 图像的颜色空间转换

OpenCV 例程200篇 目录-202205更新