R语言入门--第十一节(置换检验与自助法求置信区间)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言入门--第十一节(置换检验与自助法求置信区间)相关的知识,希望对你有一定的参考价值。
参考技术A 原理参考 文章 ,主要思想我认为是求出所有分布的可能(中间的一般为零假设),出现这种分布的概率。distribution= 参数可为exact(精确模式,即依据所有可能的排列组合,仅适用于两样本问题)、approxiamate(nresample=#)(蒙特卡洛抽样,#指需要重复的次数)、asymptotic(渐进分布抽样)
lmPerm包更擅长方差分析。示例实验设计仍为5组接受不同治疗方法的多组结果比较。
实验示例仍为关节炎的治疗(两种)与效果(无、部分、显著)间的关系
实验示例为研究文盲率与谋杀率是否相关
主要为 lmp() 、 aovp() 两个函数分别对应参数法的 lm() 线性回归、 aov() 方差分析。主要格式上的区别是添加了 perm= 参数。可以为Exact(精确模式)、Prob(不断从可能的序列中抽样,直至估计的标准差在估计的p值0.1之下)、SPR(使用贯序概率比检验来判断何时停止抽样)。值得注意的是当样本观测大于10,perm="Exact"自动默认转为"Prob",因此精确检验只适用于小样本问题。
(1)简单线性回归
实验示例仍为以身高预测体重的设计
(2)多项式回归
高精度拟合身高体重回归关系
(3)多元回归
探究谋杀率与多因素的回归关系
(1)单因素方差分析
(2)单因素协方差分析
实验示例仍为药物对刚出生小鼠体重影响,协变量为怀孕时间
(3)双因素方差分析(交互效应)
实验示例:两种药物分别在不同剂量下对小鼠牙齿长度的影响。
核心思想是有放回的抽样多次(1000次)
(1)写一个能返回带研究统计量的函数;
(2)确定重复数,使用 boot() 函数处理;(一般重复1000次即可;此外有人认为初始样本大小为20-30即可得到足够好的结果);
(3) boot.ci() 函数计算统计量置信区间。
实验示例:使用mtcar数据框,采用多元回归,根据车重和发动机排量来预测汽车的每加仑行驶的英里数。想获得95%的R平方值(预测变量对响应变量可解释的方差比)的置信区间
(1)首先写函数
(2)然后使用boot()函数
(3)最后boot.ci()函数求置信区间
实验示例:使用mtcar数据框,采用多元回归,根据车总和发动机排量来预测汽车的每加仑行驶的英里数。想获取一个统计量向量--三个回归系数(截距项、车总、发动机排量)95%的置信区间。
R语言Wald检验 vs 似然比检验
原文链接:http://tecdat.cn/?p=6895
在开展基于概率推理的课程时,关键主题之一是基于似然函数的检验和置信区间构建。通常包括Wald,似然比和分数检验。在这篇文章中,我将修改Wald和似然比检验的优缺点。我将重点关注置信区间而不是检验 。
示例
我们将X表示观察到的成功次数的随机变量,x表示其实现的值。似然函数只是二项式概率函数,但参数是模型参数。 所以MLE只是观察到的比例。
Wald置信区间
如果我们使用将参数空间(在我们的示例中为区间(0,1))映射到整个实线的变换,那么我们保证在原始比例上获得仅包括允许参数值的置信区间。
对于概率参数绘制的n = 10,x = 1的二项式示例的对数似然函数:
从视觉上我们可以看出,对数似然函数在绘制时 实际上不是二次方。下图显示了相同的对数似然函数,但现在x轴是对数几率:
二项式的对数似然函数n = 10 x = 1检验,相对于对数几率。
似然比置信区间
虽然似然比方法具有明显的统计优势,但计算上Wald区间/测试更容易。在实践中,如果样本量不是太小,并且Wald间隔是以适当的比例构建的,它们通常是合理的。然而,在小样本中,似然比方法可能是优选的。
点击标题查阅往期内容
更多内容,请点击左下角“阅读原文”查看
案例精选、技术干货 第一时间与您分享
长按二维码加关注
更多内容,请点击左下角“阅读原文”查看
以上是关于R语言入门--第十一节(置换检验与自助法求置信区间)的主要内容,如果未能解决你的问题,请参考以下文章
自助法(bootstrap)在统计检验中的应用及R语言实现过程
R语言编写自定义函数计算R方使用自助法Bootstrapping估计多元回归模型的R方的置信区间可视化获得的boot对象估计单个统计量的置信区间分别使用分位数法和BCa法
R语言boot包中的boot函数格式以及参数说明boot.ci函数格式以及参数说明使用boot包进行自助法Bootstrapping分析的步骤计算统计量或者统计向量的置信区间