如何进行SQL性能优化

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何进行SQL性能优化相关的知识,希望对你有一定的参考价值。

SQL Server数据库查询速度慢的原因有很多,常见的有以下几种:
1、没有索引或者没有用到索引(这是查询慢最常见的问题,是数据库设计的缺陷)
2、I/O吞吐量小,形成了瓶颈效应。
3、没有创建计算列导致查询不优化。
4、内存不足
5、网络速度慢
6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)
7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)
8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。
9、返回了不必要的行和列
10、查询语句不好,没有优化
●可以通过以下方法来优化查询 :
1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2000不在支持。数据量(尺寸)越大,提高I/O越重要。
2、纵向、横向分割表,减少表的尺寸(sp_spaceuse)
3、升级硬件
4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。注意填充因子要适当(最好是使用默认值0)。索引应该尽量小,使用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段。
5、提高网速。
6、扩大服务器的内存,Windows 2000和SQL server 2000能支持4-8G的内存。
配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配置。运行 Microsoft SQL Server? 2000时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的1.5倍。如果另外安装了全文检索功能,并打算运行Microsoft搜索服务以便执行全文索引和查询,可考虑:将虚拟内存大小配置为至少是计算机中安装的物理内存的3倍。将SQL Server max server memory服务器配置选项配置为物理内存的1.5倍(虚拟内存大小设置的一半)。
7、增加服务器CPU个数;但是必须 明白并行处理串行处理更需要资源例如内存。使用并行还是串行程是MSSQL自动评估选择的。单个任务分解成多个任务,就可以在处理器上运行。例如耽搁查询 的排序、连接、扫描和GROUP BY字句同时执行,SQL SERVER根据系统的负载情况决定最优的并行等级,复杂的需要消耗大量的CPU的查询最适合并行处理。但是更新操作UPDATE,INSERT, DELETE还不能并行处理。
8、如果是使用like进行查询的话,简单的使用index是不行的,但是全文索引,耗空间。 like ''a%'' 使用索引 like ''%a'' 不使用索引用 like ''%a%'' 查询时,查询耗时和字段值总长度成正比,所以不能用CHAR类型,而是VARCHAR。对于字段的值很长的建全文索引。
9、DB Server 和APPLication Server 分离;OLTP和OLAP分离
10、分布式分区视图可用于实现数据库服务器联合体。
联合体是一组分开管理的服务器,但它们相互协作分担系统的处理负荷。这种通过分区数据形成数据库服务器联合体的机制能够扩大一组服务器,以支持大型的多层 Web 站点的处理需要。有关更多信息,参见设计联合数据库服务器。(参照SQL帮助文件''分区视图'')
a、在实现分区视图之前,必须先水平分区表
b、 在创建成员表后,在每个成员服务器上定义一个分布式分区视图,并且每个视图具有相同的名称。这样,引用分布式分区视图名的查询可以在任何一个成员服务器上 运行。系统操作如同每个成员服务器上都有一个原始表的复本一样,但其实每个服务器上只有一个成员表和一个分布式分区视图。数据的位置对应用程序是透明的。
11、重建索引 DBCC REINDEX ,DBCC INDEXDEFRAG,收缩数据和日志 DBCC SHRINKDB,DBCC SHRINKFILE. 设置自动收缩日志.对于大的数据库不要设置数据库自动增长,它会降低服务器的性能。
在T-sql的写法上有很大的讲究,下面列出常见的要点:首先,DBMS处理查询计划的过程是这样的:
1、 查询语句的词法、语法检查
2、 将语句提交给DBMS的查询优化器
3、 优化器做代数优化和存取路径的优化
4、 由预编译模块生成查询规划
5、 然后在合适的时间提交给系统处理执行
6、 最后将执行结果返回给用户。
其次,看一下SQL SERVER的数据存放的结构:一个页面的大小为8K(8060)字节,8个页面为一个盘区,按照B树存放。
参考技术A SQL性能优化的目标是减少数据 读/写 次数及降低 CPU 计算。
要达到上述2个目标的方法其实只有一个,那就是改变 SQL 的执行计划,让它尽量“少走弯路”,尽量通过各种“捷径”来找到需要的数据。
1、分析复杂的SQL语句,改进语句。
2、开启缓存查询,加快相同的查询速度。
3、使静态表速度更快,复杂多表尽量少用join,尽量少排序等。
4、从全局出发优化,而不是片面调整。

容易忽视的十大SQL优化方案!

SQL性能问题已经逐步发展成为数据库性能的首要问题,80%的数据库性能问题都是因SQL而导致。面对日益增多的SQL性能问题,如何下手以及如何提前审核已经成为越来越多的程序员必须要考虑的问题。小千总结了一些容易忽视的几个SQL优化方案,大家一起交流学习!
在这里插入图片描述

一、避免进行null判断

应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,这里不要给数据库留NULL,尽可能的使用 NOT NULL填充数据库。

备注、描述、评论之类的可以设置为 NULL,不要使用NULL。不要错误的认为NULL 不需要空间,如char(100) 型,在字段建立时,空间就固定了。不管是否插入值(NULL也包含在内),都是占用 100个字符的空间的,如果是varchar这样的变长字段, null 不占用空间。可以在num上设置默认值0,确保表中num列没有null值。

二、不要使用select *

使用select *的话会增加解析的时间,另外也会把不需要的数据同时查询出来,从而延长数据传输时间,耗费精力。如text类型的字段,通常用来保存一些内容比较繁杂的东西,如果使用select *,则会把该字段也查询出来。

三、谨慎使用模糊查询

当模糊匹配以%开头时,该列索引将失效。若不以%开头,该列索引有效。

四、不要使用列号

使用列号的话,将会增加不必要的解析时间。

五、优先使用UNION ALL,避免使用UNION

因为UNION 会将各查询子集的记录做比较,故比起UNION ALL ,通常速度都会慢上许多。一般来说,如果使用UNION ALL能满足要求的话,务必使用UNION ALL。还有一种情况,如果业务上能够确保不会出现重复记录。

六、在where语句或者order by语句中避免对索引字段进行计算操作

当在索引列上进行操作之后,索引将会失效。正确做法应该是将值计算好再传入进来。

七、使用not exist代替not in

如果查询语句使用了not in 那么内外表都进行全表扫描,没有用到索引;而not extsts 的子查询依然能用到表上的索引。

八、exist和in的区别

in 是把外表和内表作hash 连接,而exists是对外表作loop循环,每次loop循环

再对内表进行查询。因此,in用到的是外表的索引, exists用到的是内表的索引。如果查询的两个表大小相当,那么用in和exists差别不大。如果两个表中一个较小,一个是大表,则子查询表大的用exists,子查询表小的用in。

九、避免在索引列上做如下操作

1.避免在索引列上使用IS NULL和IS NOT NULL。

2.避免在索引列上出现数据类型转换。(比如某字段是String类型,参数传入时是int类型)当在索引列上使用如上操作时,索引将会失效,造成全表扫描。

十、复杂操作可以考虑适当拆成几步

有时候会有通过一个SQL语句来实现复杂业务的例子出现,为了实现复杂的业务,嵌套多级子查询。造成SQL性能问题。对于这种情况可以考虑拆分SQL,通过多个SQL语句实现,或者把部分程序能完成的工作交给程序完成。

以上是关于如何进行SQL性能优化的主要内容,如果未能解决你的问题,请参考以下文章

如何进行SQL性能优化

优化SQL查询:如何写出高性能SQL语句

优化SQL查询:如何写出高性能SQL语句

优化SQL查询:如何写出高性能SQL语句

MySQL 性能调优——SQL 查询优化

优化SQL查询:如何写出高性能SQL语句