hadoop,storm和spark的区别,比较

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hadoop,storm和spark的区别,比较相关的知识,希望对你有一定的参考价值。

参考技术A

一、hadoop、Storm该选哪一个?

为了区别hadoop和Storm,该部分将回答如下问题:
1.hadoop、Storm各是什么运算
2.Storm为什么被称之为流式计算系统
3.hadoop适合什么场景,什么情况下使用hadoop
4.什么是吞吐量


首先整体认识:Hadoop是级计算,进行计算时,数据在磁盘上,需要读写磁盘;Storm是内存级计算,数据直接通过网络导入内存。读写内存比读写磁盘速度快n个数量级。根据Harvard CS61课件,磁盘访问延迟约为内存访问延迟的75000倍。所以Storm更快。


注释:
1. 延时 , 指数据从产生到运算产生结果的时间,“快”应该主要指这个。
2. 吞吐, 指系统单位时间处理的数据量。


storm的网络直传、内存计算,其时延必然比hadoop的通过hdfs传输低得多;当计算模型比较适合流式时,storm的流式处理,省去了批处理的收集数据的时间;因为storm是服务型的作业,也省去了作业调度的时延。所以从时延上来看,storm要快于hadoop。


从原理角度来讲:

    Hadoop M/R基于HDFS,需要切分输入数据、产生中间数据文件、排序、数据压缩、多份复制等,效率较低。

    Storm 基于ZeroMQ这个高性能的消息通讯库,不持久化数据。

    为什么storm比hadoop快,下面举一个应用场景
    说一个典型的场景,几千个日志生产方产生日志文件,需要进行一些ETL操作存入一个数据库。

    假设利用hadoop,则需要先存入hdfs,按每一分钟切一个文件的粒度来算(这个粒度已经极端的细了,再小的话hdfs上会一堆小文件),hadoop开始计算时,1分钟已经过去了,然后再开始调度任务又花了一分钟,然后作业运行起来,假设机器特别多,几钞钟就算完了,然后写数据库假设也花了很少的时间,这样,从数据产生到最后可以使用已经过去了至少两分多钟。
    而流式计算则是数据产生时,则有一个程序去一直监控日志的产生,产生一行就通过一个传输系统发给流式计算系统,然后流式计算系统直接处理,处理完之后直接写入,每条数据从产生到写入数据库,在资源充足时可以在毫秒级别完成。


    同时说一下另外一个场景:
    如果一个大文件的wordcount,把它放到storm上进行流式的处理,等所有已有数据处理完才让storm输出结果,这时候,你再把它和hadoop比较快慢,这时,其实比较的不是时延,而是比较的吞吐了。

    --------------------------------------------------------------------------------------------------------------------------------
    最主要的方面:Hadoop使用作为中间交换的介质,而storm的数据是一直在内存中流转的。
    两者面向的领域也不完全相同,一个是批量处理,基于任务调度的;另外一个是实时处理,基于流。
    以水为例,Hadoop可以看作是纯净水,一桶桶地搬;而Storm是用水管,预先接好(Topology),然后打开水龙头,水就源源不断地流出来了。

    --------------------------------------------------------------------------------------------------------------------------------
    Storm的主工程师Nathan Marz表示: Storm可以方便地在一个计算机集群中编写与扩展复杂的实时计算,Storm之于实时处理,就好比Hadoop之于批处理。Storm保证每个消息都会得到处理,而且它很快——在一个小集群中,每秒可以处理数以百万计的消息。更棒的是你可以使用任意编程语言来做开发。
    Storm的主要特点如下:
    1.简单的模型。类似于MapReduce降低了并行批处理复杂性,Storm降低了进行实时处理的复杂性。
    2.可以使用各种。你可以在Storm之上使用各种编程语言。默认支持Clojure、Java、Ruby和Python。要增加对其他语言的支持,只需实现一个简单的Storm通信协议即可。
    3.容错性。Storm会管理工作进程和节点的故障。
    4.水平扩展。计算是在多个线程、进程和服务器之间并行进行的。
    5.可靠的消息处理。Storm保证每个消息至少能得到一次完整处理。任务失败时,它会负责从消息源重试消息。
    6.快速。系统的设计保证了消息能得到快速的处理,使用MQ作为其底层消息队列。
    7.本地模式。Storm有一个“本地模式”,可以在处理过程中完全模拟Storm集群。这让你可以快速进行开发和单元测试。

    --------------------------------------------------------------------------------------------------------------------------------
    在消耗资源相同的情况下,一般来说storm的延时低于mapreduce。但是吞吐也低于mapreduce。storm是典型的流计算系统,mapreduce是典型的批处理系统。下面对流计算和批处理系统流程

    这个个数据处理流程来说大致可以分三个阶段:
    1. 数据采集与准备
    2. 数据计算(涉及计算中的中间存储), 题主中的“那些方面决定”应该主要是指这个阶段处理方式。
    3. 数据结果展现(反馈)

    1)阶段,目前典型的处理处理策略:数据的产生系统一般出自页面打点和解析DB的log,流计算将数据采集中消息队列(比如kafaka,metaQ,timetunle)等。批处理系统一般将数据采集进分布式文件系统(比如HDFS),当然也有使用消息队列的。我们暂且把消息队列和文件系统称为预处理存储。二者在延时和吞吐上没太大区别,接下来从这个预处理存储进入到数据计算阶段有很大的区别,流计算一般在实时的读取消息队列进入流计算系统(storm)的数据进行运算,批处理一系统一般会攒一大批后批量导入到计算系统(hadoop),这里就有了延时的区别。
    2)数据计算阶段,流计算系统(storm)的延时低主要有一下几个方面(针对题主的问题)
    A: storm 进程是常驻的,有数据就可以进行实时的处理
    mapreduce 数据攒一批后由作业管理系统启动任务,Jobtracker计算任务分配,tasktacker启动相关的运算进程
    B: stom每个计算单元之间数据之间通过网络(zeromq)直接传输。
    mapreduce map任务运算的结果要写入到HDFS,在于reduce任务通过网络拖过去运算。相对来说多了读写,比较慢
    C: 对于复杂运算
    storm的运算模型直接支持DAG(有向无环图)
    mapreduce 需要肯多个MR过程组成,有些map操作没有意义的

    3)数据结果展现
    流计算一般运算结果直接反馈到最终结果集中(展示页面,,搜索引擎的索引)。而mapreduce一般需要整个运算结束后将结果批量导入到结果集中。

    实际流计算和批处理系统没有本质的区别,像storm的trident也有批概念,而mapreduce可以将每次运算的数据集缩小(比如几分钟启动一次),facebook的puma就是基于hadoop做的流计算系统。

    二、高性能并行计算引擎Storm和Spark比较

    Spark基于这样的理念,当数据庞大时,把计算过程传递给数据要比把数据传递给计算过程要更富效率。每个节点存储(或缓存)它的数据集,然后任务被提交给节点。

    所以这是把过程传递给数据。这和Hadoop map/reduce非常相似,除了积极使用内存来避免I/O操作,以使得迭代算法(前一步计算输出是下一步计算的输入)性能更高。

    Shark只是一个基于Spark的查询引擎(支持ad-hoc临时性的分析查询)

    而Storm的架构和Spark截然相反。Storm是一个分布式流计算引擎。每个节点实现一个基本的计算过程,而数据项在互相连接的网络节点中流进流出。和Spark相反,这个是把数据传递给过程。

    两个框架都用于处理大量数据的并行计算。

    Storm在动态处理大量生成的“小数据块”上要更好(比如在Twitter数据流上实时计算一些汇聚功能或分析)。

    Spark工作于现有的数据全集(如Hadoop数据)已经被导入Spark集群,Spark基于in-memory管理可以进行快讯扫描,并最小化迭代算法的全局I/O操作。

    不过Spark流模块(Streaming Module)倒是和Storm相类似(都是流计算引擎),尽管并非完全一样。

    Spark流模块先汇聚批量数据然后进行数据块分发(视作不可变数据进行处理),而Storm是只要接收到数据就实时处理并分发。

    不确定哪种方式在数据吞吐量上要具优势,不过Storm计算时间延迟要小。

    总结下,Spark和Storm设计相反,而Spark Steaming才和Storm类似,前者有数据平滑窗口(sliding window),而后者需要自己去维护这个窗口。

以上是关于hadoop,storm和spark的区别,比较的主要内容,如果未能解决你的问题,请参考以下文章

hadoop,storm和spark的区别,比较

hadoop,storm和spark的区别,比较

请描述下大数据三大平台hadoop,storm,spark的区别和应用场景

[转]hadoop,spark,storm,pig,hive,mahout等到底有什么区别和联系?

Storm与Spark区别

spark和hive storm mapreduce的比较