大数据经典算法解析(1)一C4.5算法

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据经典算法解析(1)一C4.5算法相关的知识,希望对你有一定的参考价值。

参考技术A 姓名:崔升    学号:14020120005

【嵌牛导读】:

C4.5作为一种经典的处理大数据的算法,是我们在学习互联网大数据时不得不去了解的一种常用算法

【嵌牛鼻子】:经典大数据算法之C4.5简单介绍

【嵌牛提问】:C4.5是一种怎么的算法,其决策机制靠什么实现?

【嵌牛正文】:

决策树模型:

决策树是一种通过对特征属性的分类对样本进行分类的树形结构,包括有向边与三类节点:

根节点(root node),表示第一个特征属性,只有出边没有入边;

内部节点(internal node),表示特征属性,有一条入边至少两条出边

叶子节点(leaf node),表示类别,只有一条入边没有出边。

上图给出了(二叉)决策树的示例。决策树具有以下特点:

对于二叉决策树而言,可以看作是if-then规则集合,由决策树的根节点到叶子节点对应于一条分类规则;

分类规则是 互斥并且完备 的,所谓 互斥 即每一条样本记录不会同时匹配上两条分类规则,所谓 完备 即每条样本记录都在决策树中都能匹配上一条规则。

分类的本质是对特征空间的划分,如下图所示,

决策树学习:

决策树学习的本质是从训练数据集中归纳出一组分类规则[2]。但随着分裂属性次序的不同,所得到的决策树也会不同。如何得到一棵决策树既对训练数据有较好的拟合,又对未知数据有很好的预测呢?

首先,我们要解决两个问题:

如何选择较优的特征属性进行分裂?每一次特征属性的分裂,相当于对训练数据集进行再划分,对应于一次决策树的生长。ID3算法定义了目标函数来进行特征选择。

什么时候应该停止分裂?有两种自然情况应该停止分裂,一是该节点对应的所有样本记录均属于同一类别,二是该节点对应的所有样本的特征属性值均相等。但除此之外,是不是还应该其他情况停止分裂呢?

2. 决策树算法

特征选择

特征选择指选择最大化所定义目标函数的特征。下面给出如下三种特征(Gender, Car Type, Customer ID)分裂的例子:

图中有两类类别(C0, C1),C0: 6是对C0类别的计数。直观上,应选择Car Type特征进行分裂,因为其类别的分布概率具有更大的倾斜程度,类别不确定程度更小。

为了衡量类别分布概率的倾斜程度,定义决策树节点tt的不纯度(impurity),其满足:不纯度越小,则类别的分布概率越倾斜;下面给出不纯度的的三种度量:

其中,p(ck|t)p(ck|t)表示对于决策树节点tt类别ckck的概率。这三种不纯度的度量是等价的,在等概率分布是达到最大值。

为了判断分裂前后节点不纯度的变化情况,目标函数定义为信息增益(information gain):

I(⋅)I(⋅)对应于决策树节点的不纯度,parentparent表示分裂前的父节点,NN表示父节点所包含的样本记录数,aiai表示父节点分裂后的某子节点,N(ai)N(ai)为其计数,nn为分裂后的子节点数。

特别地,ID3算法选取 熵值 作为不纯度I(⋅)I(⋅)的度量,则

cc指父节点对应所有样本记录的类别;AA表示选择的特征属性,即aiai的集合。那么,决策树学习中的信息增益ΔΔ等价于训练数据集中 类与特征的互信息 ,表示由于得知特征AA的信息训练数据集cc不确定性减少的程度。

在特征分裂后,有些子节点的记录数可能偏少,以至于影响分类结果。为了解决这个问题,CART算法提出了只进行特征的二元分裂,即决策树是一棵二叉树;C4.5算法改进分裂目标函数,用信息增益比(information gain ratio)来选择特征:

因而,特征选择的过程等同于计算每个特征的信息增益,选择最大信息增益的特征进行分裂。此即回答前面所提出的第一个问题(选择较优特征)。ID3算法设定一阈值,当最大信息增益小于阈值时,认为没有找到有较优分类能力的特征,没有往下继续分裂的必要。根据最大表决原则,将最多计数的类别作为此叶子节点。即回答前面所提出的第二个问题(停止分裂条件)。

决策树生成:

ID3算法的核心是根据信息增益最大的准则,递归地构造决策树;算法流程如下:

如果节点满足停止分裂条件(所有记录属同一类别 or 最大信息增益小于阈值),将其置为叶子节点;

选择信息增益最大的特征进行分裂;

重复步骤1-2,直至分类完成。

C4.5算法流程与ID3相类似,只不过将信息增益改为 信息增益比 。

3. 决策树剪枝

过拟合

生成的决策树对训练数据会有很好的分类效果,却可能对未知数据的预测不准确,即决策树模型发生过拟合(overfitting)——训练误差(training error)很小、泛化误差(generalization error,亦可看作为test error)较大。下图给出训练误差、测试误差(test error)随决策树节点数的变化情况:

可以观察到,当节点数较小时,训练误差与测试误差均较大,即发生了欠拟合(underfitting)。当节点数较大时,训练误差较小,测试误差却很大,即发生了过拟合。只有当节点数适中是,训练误差居中,测试误差较小;对训练数据有较好的拟合,同时对未知数据有很好的分类准确率。

发生过拟合的根本原因是分类模型过于复杂,可能的原因如下:

训练数据集中有噪音样本点,对训练数据拟合的同时也对噪音进行拟合,从而影响了分类的效果;

决策树的叶子节点中缺乏有分类价值的样本记录,也就是说此叶子节点应被剪掉。

剪枝策略

为了解决过拟合,C4.5通过剪枝以减少模型的复杂度。[2]中提出一种简单剪枝策略,通过极小化决策树的整体损失函数(loss function)或代价函数(cost function)来实现,决策树TT的损失函数为:

其中,C(T)C(T)表示决策树的训练误差,αα为调节参数,|T||T|为模型的复杂度。当模型越复杂时,训练的误差就越小。上述定义的损失正好做了两者之间的权衡。

如果剪枝后损失函数减少了,即说明这是有效剪枝。具体剪枝算法可以由动态规划等来实现。

4. 参考资料

[1] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining .

[2] 李航,《统计学习方法》.

[3] Naren Ramakrishnan, The Top Ten Algorithms in Data Mining.

以上是关于大数据经典算法解析(1)一C4.5算法的主要内容,如果未能解决你的问题,请参考以下文章

盘点:数据挖掘十大经典算法

数据挖掘十大算法

数据挖掘十大经典算法

大数据经典算法解析(8)一KNN算法

十大数据挖掘领域的经典算法

数据挖掘十大经典算法