大数据经典算法解析(8)一KNN算法

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据经典算法解析(8)一KNN算法相关的知识,希望对你有一定的参考价值。

参考技术A   姓名:崔升    学号:14020120005

【嵌牛导读】:

 本文讨论的kNN算法是监督学习中分类方法的一种。所谓监督学习与非监督学习,是指训练数据是   否有标注类别,若有则为监督学习,若否则为非监督学习。监督学习是根据输入数据(训练数据)   学习一个模型,能对后来的输入做预测。在监督学习中,输入变量与输出变量可以是连续的,也可   以是离散的。若输入变量与输出变量均为连续变量,则称为 回归 ;输出变量为有限个离散变量,则   称为 分类 ;输入变量与输出变量均为变量序列,则称为 标注 [2]。

【嵌牛鼻子】:经典大数据算法之kNN算法的简单介绍

【嵌牛提问】:kNN是一种怎么的算法,其数学原理又是如何?

【嵌牛正文】:

1. 引言

顶级数据挖掘会议ICDM于2006年12月评选出了数据挖掘领域的 十大经典算法 :C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naïve Bayes与 CART。 以前看过关于这些数据挖掘算法,但对背后数学原理未做过多探究,因而借此整理以更深入地理解这些算法。

2. kNN算法

kNN算法的核心思想非常简单:在训练集中选取离输入的数据点最近的k个邻居,根据这个k个邻居中出现次数最多的类别(最大表决规则),作为该数据点的类别。

算法描述

训练集T=(x1,y1),(x2,y2),⋯,(xN,yN)T=(x1,y1),(x2,y2),⋯,(xN,yN),其类别yi∈c1,c2,⋯,cKyi∈c1,c2,⋯,cK,训练集中样本点数为NN,类别数为KK。输入待预测数据xx,则预测类别

y=argmaxcj∑xi∈Nk(x)I(yi=cj),i=1,2,⋯,N;j=1,2,⋯,K(1)(1)y=arg⁡maxcj⁡∑xi∈Nk(x)I(yi=cj),i=1,2,⋯,N;j=1,2,⋯,K

其中,涵盖xx的k邻域记作Nk(x)Nk(x),当yi=cjyi=cj时指示函数I=1I=1,否则I=0I=0。

分类决策规则

kNN学习模型:输入XX,通过学习得到决策函数:输出类别Y=f(X)Y=f(X)。假设分类损失函数为0-1损失函数,即分类正确时损失函数值为0,分类错误时则为1。假如给xx预测类别为cjcj,即f(X)=cjf(X)=cj;同时由式子 (1) (1)可知k邻域的样本点对学习模型的贡献度是均等的,则kNN学习模型误分类率为

1k∑xi∈Nk(x)I(yi≠f(xi))=1k∑xi∈Nk(x)I(yi≠cj)=1−1k∑xi∈Nk(x)I(yi=cj)(2)(2)1k∑xi∈Nk(x)I(yi≠f(xi))=1k∑xi∈Nk(x)I(yi≠cj)=1−1k∑xi∈Nk(x)I(yi=cj)

若要最小化误分类率,则应

maxcj∑xi∈Nk(x)I(yi=cj)maxcj⁡∑xi∈Nk(x)I(yi=cj)

所以,最大表决规则等价于经验风险最小化。

存在问题

k值得选取对kNN学习模型有着很大的影响。若k值过小,预测结果会对噪音样本点显得异常敏感。特别地,当k等于1时,kNN退化成最近邻算法,没有了显式的学习过程。若k值过大,会有较大的邻域训练样本进行预测,可以减小噪音样本点的减少;但是距离较远的训练样本点对预测结果会有贡献,以至于造成预测结果错误。下图给出k值的选取对于预测结果的影响:

前面提到过,k邻域的样本点对预测结果的贡献度是相等的;但距离更近的样本点应有更大的相似度,其贡献度应比距离更远的样本点大。可以加上权值wi=1/∥xi−x∥wi=1/‖xi−x‖进行修正,则最大表决原则变成:

maxcj∑xi∈Nk(x)wi∗I(yi=cj)maxcj⁡∑xi∈Nk(x)wi∗I(yi=cj)

3. 参考资料

[1] Michael Steinbach and Pang-Ning Tan, The Top Ten Algorithms in Data Mining.

[2] 李航,《统计学习方法》.

以上是关于大数据经典算法解析(8)一KNN算法的主要内容,如果未能解决你的问题,请参考以下文章

机器学习经典算法具体解释及Python实现--K近邻(KNN)算法

Pyhon3实现机器学习经典算法KNN

详解数据挖掘十大经典算法!

大数据文摘:十大数据挖掘算法及各自优势

数据挖掘经典算法之K-邻近算法(超详细附代码)

数据挖掘领域十大经典算法