第一个想学的语言是python,该看哪几本书比较好,从入门可以到精通那种
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了第一个想学的语言是python,该看哪几本书比较好,从入门可以到精通那种相关的知识,希望对你有一定的参考价值。
1.《Python编程从入门到精通》
本书循序渐进、由浅入深地详细讲解了Python3语言开发的核心技术,并通过具体实例的实现过程演练了各个知识点的具体使用流程。通过两个综合实例的实现过程,介绍了Python
3语言在综合项目中的使用流程。全书内容循序渐进,以“技术解惑”和“范例演练”贯穿全书,引领读者全面掌握Python 3语言。
书中共有900多个实例和范例、300多个正文实例、600多个拓展范例、77个课后练习、63个技术解惑、两大综合案例,每个知识点除了一个实例外,还有两个拓展范例,达到举一反三的效果。
2.《易学Python 》
《易学Python》采用简洁、有趣、易学的方式对Python 3编程语言进行了讲解,其风格与通篇介绍编程特性、罗列语言功能的大多数编程图书不同,而是引导读者带着好奇,带着问题去学习、掌握Python编程语言,继而编写真实而有用的程序。
无尘茄论你是零基础的Python初学人员,还让此是具有其他语言编程经验,但是想从事Python开发的人员,《易学Python》都将带领你踏上有趣的Python学习之路。
3.《Python核心编程(第3版)》
畅销经典的Python书,兼顾Python2和Python3,Python开发人员的案头常备。本书涵盖了成为一名技术全面的Python开发人员所需的一切内容。本书讲解了应用派滑察开发相关的多个领域,而且书中的内容可以立即应用到项目开发中。此外,本书还包含了一些使用Python
2和Python 3编写的代码案例,以及一些代码移植技巧。有些代码片段甚至无须修改就可以运行在Python 2.x或Python 3.x上。
4.《趣学Python编程》
Python是一种强大并通俗易懂的编程语言,而且它易学又好用!但是关于学习Python语言的书大多很枯燥无趣,读起来没什么乐趣。本书把你带入一个鲜活的Python编程世界。每章后面都配有编程练习来帮助训练思维并加强理解。
对于Python开发有兴趣的小伙伴们,不妨先从看看Python开发书籍开始入门!B站上有很多的Python教学视频,从基础到高级的都有,还挺不错的,知识点讲的很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。
参考技术A 这里介绍几本还可以的书:《Python编程:从入门到实践》、《流畅的python》、《Python编程快速上手——让繁琐工作自动化》、《笨办法学_Python》、《Python基础教程》、《Python学习手册》、《Python游戏编程快速上手》、《像计算机科学家一样思考Python》、《Effective Python.编写高质量Python代码的59个有效方法》、《Selenium自动化测试 基于 Python 语言》、《Python网络数据采集》、《Python核心编程第3版中文版》,好了就这些。 参考技术B 给你推荐几本入门级别的书,评价都不错,希望你能找到适合自己的《零基础入门学习Python》
《Phtyon编程语言:从入门到实践》
《“笨办法”学Python》
《Effective Python 中文版》
《Python学习手册(第4版)》 参考技术C 书本推荐《Python编程实战从入门到实践》;
我公众号里有比较多的python学习资源和学习路线图! 参考技术D 我没看书,直接在网上找实例教程,多练,光看书只能是没入门就放弃。现在网上视频教程,博客里的实例教程,都很多,做一些实例就好了。
Python协程(真才实学,想学的进来)
真正有知识的人的成长过程,就像麦穗的成长过程:麦穗空的时候,麦子长得很快,麦穗骄傲地高高昂起,但是,麦穗成熟饱满时,它们开始谦虚,垂下麦芒。
——蒙田《蒙田随笔全集》
上篇论述了关于python多线程是否是鸡肋的问题,得到了一些网友的认可,当然也有一些不同意见,表示协程比多线程不知强多少,在协程面前多线程算是鸡肋。好吧,对此我也表示赞同,然而上篇我论述的观点不在于多线程与协程的比较,而是在于IO密集型程序中,多线程尚有用武之地。
对于协程,我表示其效率确非多线程能比,但本人对此了解并不深入,因此最近几日参考了一些资料,学习整理了一番,在此分享出来仅供大家参考,如有谬误请指正,多谢。
申明:本文介绍的协程是入门级别,大神请绕道而行,谨防入坑。
文章思路:本文将先介绍协程的概念,然后分别介绍Python2.x与3.x下协程的用法,最终将协程与多线程做比较并介绍异步爬虫模块。
协程
概念
协程,又称微线程,纤程,英文名Coroutine。协程的作用,是在执行函数A时,可以随时中断,去执行函数B,然后中断继续执行函数A(可以自由切换)。但这一过程并不是函数调用(没有调用语句),这一整个过程看似像多线程,然而协程只有一个线程执行。
优势
- 执行效率极高,因为子程序切换(函数)不是线程切换,由程序自身控制,没有切换线程的开销。所以与多线程相比,线程的数量越多,协程性能的优势越明显。
- 不需要多线程的锁机制,因为只有一个线程,也不存在同时写变量冲突,在控制共享资源时也不需要加锁,因此执行效率高很多。
说明:协程可以处理IO密集型程序的效率问题,但是处理CPU密集型不是它的长处,如要充分发挥CPU利用率可以结合多进程+协程。
以上只是协程的一些概念,可能听起来比较抽象,那么我结合代码讲一讲吧。这里主要介绍协程在Python的应用,Python2对协程的支持比较有限,生成器的yield实现了一部分但不完全,gevent模块倒是有比较好的实现;Python3.4以后引入了asyncio模块,可以很好的使用协程。
Python2.x协程
python2.x协程应用:
- yield
- gevent
python2.x中支持协程的模块不多,gevent算是比较常用的,这里就简单介绍一下gevent的用法。
Gevent
gevent是第三方库,通过greenlet实现协程,其基本思想:
当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO。
Install
pip install gevent
最新版貌似支持windows了,之前测试好像windows上运行不了……
Usage
首先来看一个简单的爬虫例子:
#! -*- coding:utf-8 -*-
import gevent
from gevent import monkey;monkey.patch_all()
import urllib2
def get_body(i):
print "start",i
urllib2.urlopen("http://cn.bing.com")
print "end",i
tasks=[gevent.spawn(get_body,i) for i in range(3)]
gevent.joinall(tasks)
运行结果:
start 0
start 1
start 2
end 2
end 0
end 1
说明:从结果上来看,执行get_body的顺序应该先是输出”start”,然后执行到urllib2时碰到IO堵塞,则会自动切换运行下一个程序(继续执行get_body输出start),直到urllib2返回结果,再执行end。也就是说,程序没有等待urllib2请求网站返回结果,而是直接先跳过了,等待执行完毕再回来获取返回值。值得一提的是,在此过程中,只有一个线程在执行,因此这与多线程的概念是不一样的。
换成多线程的代码看看:
import threading
import urllib2
def get_body(i):
print "start",i
urllib2.urlopen("http://cn.bing.com")
print "end",i
for i in range(3):
t=threading.Thread(target=get_body,args=(i,))
t.start()
运行结果:
start 0
start 1
start 2
end 1
end 2
end 0
说明:从结果来看,多线程与协程的效果一样,都是达到了IO阻塞时切换的功能。不同的是,多线程切换的是线程(线程间切换),协程切换的是上下文(可以理解为执行的函数)。而切换线程的开销明显是要大于切换上下文的开销,因此当线程越多,协程的效率就越比多线程的高。(猜想多进程的切换开销应该是最大的)
Gevent使用说明
- monkey可以使一些阻塞的模块变得不阻塞,机制:遇到IO操作则自动切换,手动切换可以用gevent.sleep(0)(将爬虫代码换成这个,效果一样可以达到切换上下文)
- gevent.spawn 启动协程,参数为函数名称,参数名称
- gevent.joinall 停止协程
Python3.x协程
python3.5协程使用可以移步:Python3.5协程学习研究
为了测试Python3.x下的协程应用,我在virtualenv下安装了python3.6的环境。
python3.x协程应用:
- asynico + yield from(python3.4)
- asynico + await(python3.5)
- gevent
Python3.4以后引入了asyncio模块,可以很好的支持协程。
asynico
asyncio是Python 3.4版本引入的标准库,直接内置了对异步IO的支持。asyncio的异步操作,需要在coroutine中通过yield from完成。
Usage
例子:(需在python3.4以后版本使用)
import asyncio
@asyncio.coroutine
def test(i):
print("test_1",i)
r=yield from asyncio.sleep(1)
print("test_2",i)
loop=asyncio.get_event_loop()
tasks=[test(i) for i in range(5)]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()
运行结果:
test_1 3
test_1 4
test_1 0
test_1 1
test_1 2
test_2 3
test_2 0
test_2 2
test_2 4
test_2 1
说明:从运行结果可以看到,跟gevent达到的效果一样,也是在遇到IO操作时进行切换(所以先输出test_1,等test_1输出完再输出test_2)。但此处我有一点不明,test_1的输出为什么不是按照顺序执行的呢?可以对比gevent的输出结果(希望大神能解答一下)。
asyncio说明
@asyncio.coroutine把一个generator标记为coroutine类型,然后,我们就把这个coroutine扔到EventLoop中执行。
test()会首先打印出test_1,然后,yield from语法可以让我们方便地调用另一个generator。由于asyncio.sleep()也是一个coroutine,所以线程不会等待asyncio.sleep(),而是直接中断并执行下一个消息循环。当asyncio.sleep()返回时,线程就可以从yield from拿到返回值(此处是None),然后接着执行下一行语句。
把asyncio.sleep(1)看成是一个耗时1秒的IO操作,在此期间,主线程并未等待,而是去执行EventLoop中其他可以执行的coroutine了,因此可以实现并发执行。
asynico/await
为了简化并更好地标识异步IO,从Python 3.5开始引入了新的语法async和await,可以让coroutine的代码更简洁易读。
请注意,async和await是针对coroutine的新语法,要使用新的语法,只需要做两步简单的替换:
- 把@asyncio.coroutine替换为async;
- 把yield from替换为await。
Usage
例子(python3.5以后版本使用):
import asyncio
async def test(i):
print("test_1",i)
await asyncio.sleep(1)
print("test_2",i)
loop=asyncio.get_event_loop()
tasks=[test(i) for i in range(5)]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()
运行结果与之前一致。
说明:与前一节相比,这里只是把yield from换成了await,@asyncio.coroutine换成了async,其余不变。
gevent
同python2.x用法一样。
协程VS多线程
如果通过以上介绍,你已经明白多线程与协程的不同之处,那么我想测试也就没有必要了。因为当线程越来越多时,多线程主要的开销花费在线程切换上,而协程是在一个线程内切换的,因此开销小很多,这也许就是两者性能的根本差异之处吧。(个人观点)
异步爬虫
也许关心协程的朋友,大部分是用其写爬虫(因为协程能很好的解决IO阻塞问题),然而我发现常用的urllib、requests无法与asyncio结合使用,可能是因为爬虫模块本身是同步的(也可能是我没找到用法)。那么对于异步爬虫的需求,又该怎么使用协程呢?或者说怎么编写异步爬虫?
给出几个我所了解的方案:
- grequests (requests模块的异步化)
- 爬虫模块+gevent(比较推荐这个)
- aiohttp (这个貌似资料不多,目前我也不太会用)
- asyncio内置爬虫功能 (这个也比较难用)
协程池
作用:控制协程数量
from bs4 import BeautifulSoup
import requests
import gevent
from gevent import monkey, pool
monkey.patch_all()
jobs = []
links = []
p = pool.Pool(10)
urls = [
‘http://www.google.com‘,
# ... another 100 urls
]
def get_links(url):
r = requests.get(url)
if r.status_code == 200:
soup = BeautifulSoup(r.text)
links + soup.find_all(‘a‘)
for url in urls:
jobs.append(p.spawn(get_links, url))
gevent.joinall(jobs)
以上是关于第一个想学的语言是python,该看哪几本书比较好,从入门可以到精通那种的主要内容,如果未能解决你的问题,请参考以下文章