Redis底层数据结构
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Redis底层数据结构相关的知识,希望对你有一定的参考价值。
参考技术ARedis中值的数据结构有String(字符串)、List(列表)、Hash(哈希)、Set(集合)和 Sorted Set(有序集合)五种,使用可参考 https://www.jianshu.com/p/fdd24839f460 。
而底层数据结构一共有 6 种,分别是简单动态字符串、双向链表、压缩列表、哈希表、跳表和整数数组。它们和数据类型的对应关系如下图所示:
可以看到,String 类型的底层实现只有一种数据结构,也就是简单动态字符串。而 List、Hash、Set 和 Sorted Set 这四种数据类型,都有两种底层实现结构。通常情况下,我们会把这四种类型称为集合类型,它们的特点是一个键对应了一个集合的数据。
为了实现从键到值的快速访问,Redis 使用了一个哈希表来保存所有键值对。一个哈希表,其实就是一个数组,数组的每个元素称为一个哈希桶。哈希桶中的元素保存的并不是值本身,而是指向具体值的指针。
这也就是说,不管值是 String,还是集合类型,哈希桶中的元素都是指向它们的指针。在下图中,可以看到,哈希桶中的 entry 元素中保存了 key和 value指针,分别指向了实际的键和值。
哈希冲突,也就是指,两个 key 的哈希值和哈希桶计算对应关系时,正好落在了同一个哈希桶中。毕竟,哈希桶的个数通常要少于 key 的数量,这也就是说,难免会有一些 key 的哈希值对应到了同一个哈希桶中。Redis 解决哈希冲突的方式,就是 链式哈希 。链式哈希也很容易理解,就是指同一个哈希桶中的多个元素用一个链表来保存,它们之间依次用指针连接。
如下图所示:entry1、entry2 和 entry3 都需要保存在哈希桶 3 中,导致了哈希冲突。此时,entry1 元素会通过一个 next指针指向 entry2,同样,entry2 也会通过 next指针指向 entry3。这样一来,即使哈希桶 3 中的元素有 100 个,我们也可以通过 entry 元素中的指针,把它们连起来。
其实,为了使 rehash 操作更高效,Redis 默认使用了两个全局哈希表:哈希表 1 和哈希表 2。一开始,当你刚插入数据时,默认使用哈希表 1,此时的哈希表 2 并没有被分配空间。随着数据逐步增多,Redis 开始执行 rehash,这个过程分为三步:
这个过程看似简单,但是第二步涉及大量的数据拷贝,如果一次性把哈希表 1 中的数据都迁移完,会造成 Redis 线程阻塞,无法服务其他请求。此时,Redis 就无法快速访问数据了。为了避免这个问题,Redis 采用了 渐进式 rehash 。
简单来说就是在第二步拷贝数据时,Redis 仍然正常处理客户端请求,每处理一个请求时,从哈希表 1 中的第一个索引位置开始,顺带着将这个索引位置上的所有 entries 拷贝到哈希表 2 中;等处理下一个请求时,再顺带拷贝哈希表 1 中的下一个索引位置的 entries。如下图所示:
对于 String 类型来说,找到哈希桶就能直接增删改查了,所以,哈希表的 O(1) 操作复杂度也就是它的复杂度了。
一个集合类型的值,第一步是通过全局哈希表找到对应的哈希桶位置,第二步是在集合中再增删改查。首先,操作复杂度与集合的底层数据结构有关。例如,使用哈希表实现的集合,要比使用链表实现的集合访问效率更高。其次,操作效率和这些操作本身的执行特点有关,比如读写一个元素的操作要比读写所有元素的效率高。
String类型对应的简单动态字符串到后面再说,集合类型的底层数据结构主要有 5 种:整数数组、双向链表、哈希表、压缩列表和跳表。
整数数组和双向链表也很常见,它们的操作特征都是顺序读写,也就是通过数组下标或者链表的指针逐个元素访问,操作复杂度基本是 O(N),操作效率比较低;压缩列表和跳表我们平时接触得可能不多,但它们也是 Redis 重要的数据结构。
压缩列表 实际上类似于一个数组,数组中的每一个元素都对应保存一个数据。和数组不同的是,压缩列表在表头有三个字段 zlbytes、zltail 和 zllen,分别表示列表长度、列表尾的偏移量和列表中的 entry 个数;压缩列表在表尾还有一个 zlend,表示列表结束。
跳表 在链表的基础上,增加了多级索引,通过索引位置的几个跳转,实现数据的快速定位,如下图所示:
Redis 之所以能快速操作键值对,一方面是因为 O(1) 复杂度的哈希表被广泛使用,包括 String、Hash 和 Set,它们的操作复杂度基本由哈希表决定,另一方面,Sorted Set 也采用了 O(logN) 复杂度的跳表。不过,集合类型的范围操作,因为要遍历底层数据结构,复杂度通常是 O(N)。
不能忘了复杂度较高的 List 类型,它的两种底层实现结构:双向链表和压缩列表的操作复杂度都是 O(N)。因此,因地制宜地使用 List 类型。例如,既然它的 POP/PUSH 效率很高,那么就将它主要用于 FIFO 队列场景,而不是作为一个可以随机读写的集合。
以上是关于Redis底层数据结构的主要内容,如果未能解决你的问题,请参考以下文章