python基础-线程创建线程池进线程异步回调(add_done_callback)进线程数据共享ftp线程池

Posted 易辰_

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python基础-线程创建线程池进线程异步回调(add_done_callback)进线程数据共享ftp线程池相关的知识,希望对你有一定的参考价值。

线程创建

进程只是用来把资源集中到一起(进程只是一个资源单位,或者说资源集合),而线程才是cpu上的执行单位。
每个进程有一个地址空间,而且默认就有一个控制线程
线程就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程

多线程(即多个控制线程)的概念是,在一个进程中存在多个控制线程,多个控制线程共享该进程的地址空间,相当于一个车间内有多条流水线,都共用一个车间的资源

我们之前了解过进程的2种创建方式
下面的代码是2种创建线程的方式

from threading import Thread
from multiprocessing import Process
import time,os

def task():
    print('%s is running' %os.getpid())
    time.sleep(2)
    print('%s is done' %os.getpid())

class Mythread(Thread):
    def __init__(self,name):
        super().__init__()
        self.name=name

    def run(self):
        print('%s is running' % os.getpid())
        time.sleep(5)
        print('%s is done' % os.getpid())


if __name__ == '__main__':
    t=Thread(target=task)
    # t=Mythread('xxxxx')
    t.start()

    print('主')

输出如下:

E:\\python\\python_sdk\\python.exe "E:/python/py_pro/1 开启线程的两种方式.py"
10336 is running
主
10336 is done

Process finished with exit code 0

线程进程pid

part1:在主进程下开启多个线程,每个线程都跟主进程的pid一样

from threading import Thread
from multiprocessing import Process
import time,os

def task():
    print('partent:%s self:%s' %(os.getppid(),os.getpid()))
    time.sleep(5)

if __name__ == '__main__':
    t=Thread(target=task,)
    # t=Process(target=task,)
    t.start()
    print('主',os.getppid(),os.getpid())

输出如下:

partent:9052 self101209052 10120

开多个进程,每个进程都有不同的pid

from threading import Thread
from multiprocessing import Process
import time,os

def task():
    print('partent:%s self:%s' %(os.getppid(),os.getpid()))
    time.sleep(5)

if __name__ == '__main__':
    t=Process(target=task,)
    t.start()
    print('主',os.getppid(),os.getpid())

输出如下:

9052 2668
partent:2668 self8744

线程进程数据共享

进程之间数据不共享,但是进程之间可以通过ipc进行数据通讯

from threading import Thread
from multiprocessing import Process
import time,os

n=100
def task():
    global n
    n=0

if __name__ == '__main__':
    t=Process(target=task,)
    t.start()
    t.join()

    print('主',n)

输出如下:

主 100

线程之间内存空间共享

from threading import Thread
import time,os

n=100
def task():
    global n
    n=0

if __name__ == '__main__':
    t=Thread(target=task,)
    t.start()
    t.join()

    print('主',n)

输出如下:

主 0

线程ftp

服务端:

import multiprocessing
import threading

import socket
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.bind(('127.0.0.1',8081))
s.listen(5)

def action(conn):
    while True:
        data=conn.recv(1024)
        print(data)
        conn.send(data.upper())

if __name__ == '__main__':

    while True:
        conn,addr=s.accept()

        p=threading.Thread(target=action,args=(conn,))
        p.start()

客户端:

from socket import *

client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8081))


while True:
    msg=input('>>: ').strip()
    if not msg:continue

    client.send(msg.encode('utf-8'))
    msg=client.recv(1024)
    print(msg.decode('utf-8'))

线程池

from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
from threading import current_thread
import time,random
def task(n):
    print('%s is running' %current_thread().getName())
    time.sleep(random.randint(1,3))
    return n**2

if __name__ == '__main__':

    t=ThreadPoolExecutor(3) #默认是cpu的核数*5
    objs=[]
    for i in range(5):
        obj=t.submit(task,i)
        objs.append(obj)

    t.shutdown(wait=True)
    for obj in objs:
        print(obj.result())
    print('主',current_thread().getName())

输出如下:

E:\\python\\python_sdk\\python.exe "E:/python/py_pro/4 线程池.py"
ThreadPoolExecutor-0_0 is running
ThreadPoolExecutor-0_1 is running
ThreadPoolExecutor-0_2 is running

ThreadPoolExecutor-0_0 is running

ThreadPoolExecutor-0_1 is running

0
1
4
9
16
主 MainThread

线程池ftp

服务端:

from socket import *
from concurrent.futures import ThreadPoolExecutor
import os

server=socket(AF_INET,SOCK_STREAM)
server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
server.bind(('127.0.0.1',8080))
server.listen(5)

def talk(conn,client_addr):
    print('进程pid: %s' %os.getpid())
    while True:
        try:
            msg=conn.recv(1024)
            if not msg:break
            conn.send(msg.upper())
        except Exception:
            break

if __name__ == '__main__':
    p=ThreadPoolExecutor(5)
    while True:
        conn,client_addr=server.accept()
        p.submit(talk,conn,client_addr)

客户端:

from socket import *

client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8081))


while True:
    msg=input('>>: ').strip()
    if not msg:continue

    client.send(msg.encode('utf-8'))
    msg=client.recv(1024)
    print(msg.decode('utf-8'))

线程的一些其他方法

from threading import Thread,current_thread,enumerate,active_count
import time,os

def task():
    print('%s is running' %current_thread().getName())
    time.sleep(5)
    print('%s is done' %current_thread().getName())

if __name__ == '__main__':
    t=Thread(target=task,name='xxxx')
    t.start()
    print(t.name)

    #查看当前活着的线程
    print(enumerate()[0].getName())
    print(active_count())
    print('主',current_thread().getName())

print()

输出如下:

E:\\python\\python_sdk\\python.exe "E:/python/py_pro/3 线程对象的其他属性或方法.py"
xxxx is running
xxxx
MainThread
2
主 MainThread

xxxx is done

异步-回调函数

ProcessPoolExecutor方式

我们之前总结的异步返回结果没有用到调用函数,接下来的是利用了回调函数

#pip install requests
import requests
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
from threading import current_thread
import time,os
def get(url):
    print('%s GET %s' %(os.getpid(),url))
    response=requests.get(url)
    time.sleep(3)
    if response.status_code == 200:
        return 'url':url,'text':response.text

def parse(obj):
    res=obj.result()
    print('[%s] <%s> (%s)' % (os.getpid(), res['url'],len(res['text'])))

if __name__ == '__main__':
    urls = [
        'https://www.python.org',
        'https://www.baidu.com',
        'https://www.jd.com',
        'https://www.tmall.com',
    ]
    t=ProcessPoolExecutor(2)
    for url in urls:
        t.submit(get,url).add_done_callback(parse)
    t.shutdown(wait=True)

    print('主',os.getpid())

代码思路是:
t=ProcessPoolExecutor(2)开一个进程池,然后去并发下载网络数据,下载完毕后,
在主进程中add_done_callback去解析
这里由于主进程、子进程不是同一个进程空间,所以在解析数据时候,在主进程
输出如下:

E:\\python\\python_sdk\\python.exe "E:/python/py_pro/5 补充异步的概念.py"
5628 GET https://www.python.org
4816 GET https://www.baidu.com


4816 GET https://www.jd.com
[3204] <https://www.baidu.com> (2443)

[3204] <https://www.python.org> (48856)
5628 GET https://www.tmall.com


[3204] <https://www.jd.com> (124541)


[3204] <https://www.tmall.com> (212080)
主 3204

Process finished with exit code 0

ThreadPoolExecutor方式

import requests
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
from threading import current_thread
import time
import os
def get(url):
    print('%s GET %s,%s' %(current_thread().getName(),os.getpid(),url))
    response=requests.get(url)
    time.sleep(3)
    if response.status_code == 200:
        return 'url':url,'text':response.text

def parse(obj):
    res=obj.result()
    print('[%s] <%s> (%s)' % (current_thread().getName(), res['url'],len(res['text'])))

if __name__ == '__main__':
    urls = [
        'https://www.python.org',
        'https://www.baidu.com',
        'https://www.jd.com',
        'https://www.tmall.com',
    ]
    t=ThreadPoolExecutor(2)
    for url in urls:
        t.submit(get,url).add_done_callback(parse)
    t.shutdown(wait=True)

    print('主',current_thread().getName(),os.getpid())

代码思路是:
t=ThreadPoolExecutor(2)开一个线程池,然后去并发下载网络数据,下载完毕后,
在主线程程中add_done_callback去解析
这里由于主线程、子线程是同一个进程空间,所以在解析数据时候,可能主线程、子线程都会解析
输出如下:

E:\\python\\python_sdk\\python.exe "E:/python/py_pro/5 补充异步的概念.py"
ThreadPoolExecutor-0_0 GET 12956,https://www.python.org
ThreadPoolExecutor-0_1 GET 12956,https://www.baidu.com

[ThreadPoolExecutor-0_1] <https://www.baidu.com> (2443)
ThreadPoolExecutor-0_1 GET 12956,https://www.jd.com

[ThreadPoolExecutor-0_0] <https://www.python.org> (48856)
ThreadPoolExecutor-0_0 GET 12956,https://www.tmall.com

[ThreadPoolExecutor-0_1] <https://www.jd.com> (124541)

[ThreadPoolExecutor-0_0] <https://www.tmall.com> (212079)
主 MainThread 12956

Process finished with exit code 0

以上是关于python基础-线程创建线程池进线程异步回调(add_done_callback)进线程数据共享ftp线程池的主要内容,如果未能解决你的问题,请参考以下文章

为你揭秘 Python 中的进程线程协程同步异步回调

Python 中的进程线程协程同步异步回调

C# 同步调用 异步调用 异步回调 多线程的作用

Python基础15 - 协程异步IO

python网络编程基础(线程与进程并行与并发同步与异步)

带你一步步实现线程池异步回调