Redis:Sorted Set类型底层数据结构剖析

Posted 流楚丶格念

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Redis:Sorted Set类型底层数据结构剖析相关的知识,希望对你有一定的参考价值。

文章目录

Redis:Sorted Set

有序集合对象有2种编码方案,当同时满足以下条件时,集合对象采用ziplist编码,否则采用skiplist编码:

  • 有序集合保存的元素数量不超过128个
  • 有序集合保存的所有元素的成员长度都小于64字节

其中,ziplist编码的有序集合采用压缩列表作为底层实现,skiplist编码的有序集合采用zset结构作为底层实现

其中,zset是一个复合结构,它的内部采用字典和跳跃表来实现,其源码如下:

typedef struct zset  
	dict *dict; 	// 字典,保存了从成员到分值的映射关系; 
	zskiplist *zsl; // 跳跃表,按分值由小到大保存所有集合元素; 
 zset;

其中成员:

  • dict 是字典的实现,保存了从成员到分支的映射关系
  • zsl 是跳跃表的实现则按分值由小到大保存了所有的集合元素

这样,当按照成员来访问有序集合时可以直接从dict中取值,当按照分值的范围访问有序集合时可以直接从zsl中取值,采用了空间换时间的策略以提高访问效率。

综上,zset对象的底层数据结构包括:压缩列表、字典、跳跃表。

ziplist:压缩列表

压缩列表(ziplist):是Redis为了节约内存而设计的一种线性数据结构,它是由一系列具有特殊编码的连续内存块构成的。一个压缩列表可以包含任意多个节点,每个节点可以保存一个字节数组或一个整数值。

压缩列表的结构如下图所示:

该结构当中的字段含义如下表所示:

属性类型长度说明
zlbytesuint32_t4字节压缩列表占用的内存字节数;
zltailuint32_t4字节压缩列表表尾节点距离列表起始地址的偏移量(单位字节);
zllenuint16_t2字节压缩列表包含的节点数量,等于UINT16_MAX时,需遍历列表计算真实数量;
entryX列表节点不周定压缩列表包含的节点,节点的长度由节点所保存的内容决定;
zlenduint8_t1字节压缩列表的结尾标识,是一个固定值0xFF;

其中,压缩列表的节点(entryX)由以下字段构成:

previous_entry_length(pel)属性以字节为单位,记录当前节点的前一节点的长度,其自身占据1字节或5字节:

  1. 如果前一节点的长度小于254字节,则“pel”属性的长度为1字节(8bit,28=256位),前一节点的长度就保存在这一个字节内;
  2. 如果前一节点的长度达到254字节,则“pel”属性的长度为5字节,其中第一个字节被设置为0xFE,之后的四个字节用来保存前一节点的长度;

基于“pel”属性,程序便可以通过指针运算,根据当前节点的起始地址计算出前一节点的起始地址,从而实现从表尾向表头的遍历操作。

content属性负责保存节点的值(字节数组或整数),其类型和长度则由encoding属性决定,它们的关系如下(了解):

encoding长度content
00 xxxxxx1字节最大长度为26 -1的字节数组;
01 xxxxxx bbbbbbbb2字节最大长度为214-1的字节数组;
10 __ bbbbbbbb … … …5字节最大长度为232-1的字节数组;
11 0000001字节int16_t类型的整数;
11 0100001字节int32_t类型的整数;
11 1000001字节int64_t类型的整数;
11 1100001字节24位有符号整数;
11 1111101字节8位有符号整数;
11 11xxxx1字节没有content属性,xxxx直接存[0,12]范围的整数值;

hashtable:字典

字典(dict)又称为散列表,是一种用来存储键值对的数据结构。C语言没有内置这种数据结构,所以Redis构建了自己的字典实现。

Redis字典的实现主要涉及三个结构体:字典、哈希表、哈希表节点。其中,每个哈希表节点保存一个键值对,每个哈希表由多个哈希表节点构成,而字典则是对哈希表的进一步封装

这三个结构体的关系如下图所示:


其中,dict代表字典,dictht代表哈希表,dictEntry代表哈希表节点。可以看出,dictEntry是一个数组,这很好理解,因为一个哈希表里要包含多个哈希表节点。而dict里包含2个dictht,多出的哈希表用于REHASH。

REHASH

REHASH 流程

当哈希表保存的键值对数量过多或过少时,需要对哈希表的大小进行扩展或收缩操作,在Redis中,扩展和收缩哈希表是通过REHASH实现的,执行REHASH的大致步骤如下:

  1. 为字典的ht[1]哈希表分配内存空间

    如果执行的是扩展操作,则ht[1]的大小为第1个大于等于ht[0].used*2=n的2n(比如说ht[0]是6,6*2=12,大于等于12的第一个2的n次方是16=24,所以ht[1]大小是16)。如果执行的是收缩操作,则ht[1]的大小为第1个大于等于ht[0].used=n的2n

  2. 将存储在ht[0]中的数据迁移到ht[1]上,重新计算键的哈希值和索引值,然后将键值对放置到ht[1]哈希表的指定位置上。

  3. 将字典的ht[1]哈希表晋升为默认哈希表,迁移完成后,清空ht[0],再交换ht[0]和ht[1]的值,为下一次REHASH做准备。

下面为一个rehash的实例 :

h[0]的大小为4,那么2 * 4 = 8 ( 第一个大于等于8的 2的n次方是2 ^ 3 ) ,所以 h[1]大小设置为8

重新计算索引,并复制, h [0] 所有的键值都迁移到 h [1]
     

完成 rehash 之后的字典

REHASH 触发条件

当满足以下任何一个条件时,程序会自动开始对哈希表执行扩展操作:

  1. 服务器目前没有执行bgsave或bgrewriteof命令,并且哈希表的负载因子大于等于1;
  2. 服务器目前正在执行bgsave或bgrewriteof命令,并且哈希表的负载因子大于等于5。

Redis有一个机制,可以自动的扫描AOF文件,并且把冗余的操作进行合并,该机制由bgrewriteof命令实现,该命令在执行后,会将Redis中的数据以命令的方式保存起来,并替换原有的文件。

渐进式REHASH

为了避免REHASH对服务器性能造成影响,REHASH操作不是一次性地完成的,而是分多次、渐进式地完成的。

渐进式REHASH的详细过程如下:

  1. 为ht[1]分配空间,让字典同时持有ht[0]和ht[1]两个哈希表;
  2. 在字典中的索引计数器rehashidx设置为0,表示REHASH操作正式开始;
  3. 在REHASH期间,每次对字典执行添加、删除、修改、查找操作时,程序除了执行指定的操作外,还会顺带将ht[0]中位于rehashidx上的所有键值对迁移到ht[1]中,再将rehashidx的值加1;
  4. 随着字典不断被访问,最终在某个时刻,ht[0]上的所有键值对都被迁移到ht[1]上,此时程序将rehashidx属性值设置为-1,标识REHASH操作完成。

REHSH期间键值对访问规则

REHSH期间,字典同时持有两个哈希表,此时的访问将按照如下原则处理:

  1. 新添加的键值对,一律被保存到ht[1]中;
  2. 删除、修改、查找等其他操作,会在两个哈希表上进行,即程序先尝试去ht[0]中访问要操作的数据,若不存在则到ht[1]中访问,再对访问到的数据做相应的处理

skiplist:跳跃表

跳跃表的查找复杂度为平均O(logN),最坏O(N),效率堪比红黑树,却远比红黑树实现简单。跳跃表是在链表的基础上,通过增加索引来提高查找效率的。

有序链表插入、删除的复杂度为O(1),而查找的复杂度为O(N)。例:若要查找值为60的元素,需要从第1个元素依次向后比较,共需比较6次才行,如下图:

跳跃表是从有序链表中选取部分节点,组成一个新链表,并以此作为原始链表的一级索引。再从一级索引中选取部分节点,组成一个新链表,并以此作为原始链表的二级索引。以此类推,可以有多级索引,如下图:

跳跃表在查找时,优先从高层开始查找,若next节点值大于目标值,或next指针指向NULL,则从当前节点下降一层继续向后查找,这样便可以提高查找的效率了。

跳跃表的实现主要涉及2个结构体:zskiplistzskiplistNode,它们的关系如下图所示:

其中,蓝色的表格代表zskiplist,红色的表格代表zskiplistNode:

  • zskiplist有指向头尾节点的指针,以及列表的长度,列表中最高的层级

  • zskiplistNode的头节点是空的,它不存储任何真实的数据,它拥有最高的层级,但这个层级不记录在zskiplist之内

以上是关于Redis:Sorted Set类型底层数据结构剖析的主要内容,如果未能解决你的问题,请参考以下文章

Redis学习-sorted set数据类型

关于redis中的zset(sorted set)

缓存数据库-redis数据类型和操作(sorted set)

Redis 基础 -- Redis数据类型之sorted_setredis索引和操作元素说明redis time命令

缓存加速------Redis的五种数据类型(String,List,Hash,Set,Sorted Set)

Redis学习笔记三:Redis有序集的底层实现(跳表)