人员密度检测基于形态学处理和GRNN网络的人员密度检测matlab仿真

Posted fpga和matlab

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了人员密度检测基于形态学处理和GRNN网络的人员密度检测matlab仿真相关的知识,希望对你有一定的参考价值。

1.软件版本

matlab2015b

2.算法概述

       人群密度情况分为三个等级,(1)稀少和不拥挤情况下为绿色提醒。(2)比较拥挤情况下,黄色预警。(3)非常拥挤情况下,红色报警。 不同人群密度情况通过相应的报警级别在界面上实时显示出来

人群密度分类两种思路:

(1)估计在景人数,根据人数多少,判断人群密度情形。

(2)提取分析人群的整体特征,训练样本,利用分类器学习分类。

首先对视频进行纹理提取,采用的方法是灰度共生矩阵:

http://wenku.baidu.com/view/d60d9ff5ba0d4a7302763ae1.html?from=search

然后通过GRNN神经网络训练识别算法:

        广义回归神经网络(Generalized regression neural network, GRNN)是一种建立在非参数核回归基础之上的神经网络,通过观测样本计算自变量和因变量之间的概率密度函数。GRNN结构如图1所示,整个网络包括四层神经元:输入层、模式层、求和层与输出层。

 

        GRNN神经网络的性能,主要通过对其隐回归单元的核函数的光滑因子来设置的,不同的光滑因子可获得不同的网络性能。输入层的神经元数目与学习样本中输入向量的维数m相等。每个神经元都分别对应一个不同的学习样本,模式层中第i个神经元的传递函数为:

        由此可以看出,当选择出学习样本之后,GRNN网络的结构与权值都是完全确定的,因而训练GRNN网络要比训练BP网络和RBF网络便捷得多。根据上述GRNN网络的各个层的输出计算公式,整个GRNN网络的输出可用如的式子表示:

3.部分源码

function pushbutton2_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global frameNum_Original;
global frameNum_Originals;
global Obj;
%%
%参数初始化
%处理视频大小
RR = 200;
CC = 300;


K                   = 3;                   %组件
Alpha               = 0.02;                %适应权重速度
Rho                 = 0.01;                %适应权重速度协方差
Deviation_sq        = 49;                  %阈值用于查找匹配 
Variance            = 2;                   %初始方差为新放置组件
Props               = 0.00001;             %最初为新放置 
Back_Thresh         = 0.8;                 %体重的比例必须占背景模型
Comp_Thresh         = 10;                  %滤掉连接组件的较小的尺寸
SHADOWS             =[0.7,0.25,0.85,0.95]; %设置阴影去除门限值

CRGB  = 3;
D     = RR * CC;
Temps = zeros(RR,CC,CRGB,'uint8');
 
 
Temps = imresize(read(Obj,1),[RR,CC]);
Temps = reshape(Temps,size(Temps,1)*size(Temps,2),size(Temps,3));      

Mus                 = zeros(D,K,CRGB);
Mus(:,1,:)          = double(Temps(:,:,1));
Mus(:,2:K,:)        = 255*rand([D,K-1,CRGB]);
Sigmas              = Variance*ones(D,K,CRGB); 
Weights             = [ones(D,1),zeros(D,K-1)];
Squared             = zeros(D,K);    
Gaussian            = zeros(D,K);     
Weight              = zeros(D,K);
background          = zeros(RR,CC,frameNum_Original);
Shadows             = zeros(RR,CC);
Images0             = zeros(RR,CC,frameNum_Original);        
Images1             = zeros(RR,CC,frameNum_Original);  
Images2             = zeros(RR,CC,frameNum_Original);   
background_Update   = zeros(RR,CC,CRGB,frameNum_Original); 

indxx               = 0; 
for tt = frameNum_Originals
    disp('当前帧数');
    tt
    indxx            = indxx + 1; 
    pixel_original   = read(Obj,tt);
    pixel_original2  = imresize(pixel_original,[RR,CC]);
 
    
 
    Temp = zeros(RR,CC,CRGB,'uint8');

    Temp = pixel_original2;
    Temp = reshape(Temp,size(Temp,1)*size(Temp,2),size(Temp,3));  

    image = Temp;
    for kk = 1:K   
        Datac         = double(Temp)-reshape(Mus(:,kk,:),D,CRGB);
        Squared(:,kk) = sum((Datac.^ 2)./reshape(Sigmas(:,kk,:),D,CRGB),2); 
    end
    [junk,index] = min(Squared,[],2); 
    Gaussian                                                = zeros(size(Squared));
    Gaussian(sub2ind(size(Squared),1:length(index),index')) = ones(D,1);
    Gaussian                                                = Gaussian&(Squared<Deviation_sq);
    %参数更新
    Weights = (1-Alpha).*Weights+Alpha.*Gaussian;
    for kk = 1:K
        pixel_matched   = repmat(Gaussian(:,kk),1,CRGB);
        pixel_unmatched = abs(pixel_matched-1);
        Mu_kk           = reshape(Mus(:,kk,:),D,CRGB);
        Sigma_kk        = reshape(Sigmas(:,kk,:),D,CRGB);
        Mus(:,kk,:)     = pixel_unmatched.*Mu_kk+pixel_matched.*(((1-Rho).*Mu_kk)+(Rho.*double(image)));
        Mu_kk           = reshape(Mus(:,kk,:),D,CRGB); 
        Sigmas(:,kk,:)  = pixel_unmatched.*Sigma_kk+pixel_matched.*(((1-Rho).*Sigma_kk)+repmat((Rho.* sum((double(image)-Mu_kk).^2,2)),1,CRGB));       
    end
    replaced_gaussian   = zeros(D,K); 
    mismatched          = find(sum(Gaussian,2)==0);       
    for ii = 1:length(mismatched)
        [junk,index]                            = min(Weights(mismatched(ii),:)./sqrt(Sigmas(mismatched(ii),:,1)));
        replaced_gaussian(mismatched(ii),index) = 1;
        Mus(mismatched(ii),index,:)             = image(mismatched(ii),:);
        Sigmas(mismatched(ii),index,:)          = ones(1,CRGB)*Variance;
        Weights(mismatched(ii),index)           = Props;  
    end
    Weights         = Weights./repmat(sum(Weights,2),1,K);
    active_gaussian = Gaussian+replaced_gaussian;
    %背景分割 
    [junk,index]    = sort(Weights./sqrt(Sigmas(:,:,1)),2,'descend');
    bg_gauss_good   = index(:,1);
    linear_index    = (index-1)*D+repmat([1:D]',1,K);
    weights_ordered = Weights(linear_index);
    for kk = 1:K
        Weight(:,kk)= sum(weights_ordered(:,1:kk),2);
    end
    bg_gauss(:,2:K) = Weight(:,1:(K-1)) < Back_Thresh;
    bg_gauss(:,1)   = 1;           
    bg_gauss(linear_index)     = bg_gauss;
    active_background_gaussian = active_gaussian & bg_gauss;
    foreground_pixels          = abs(sum(active_background_gaussian,2)-1);
    foreground_map             = reshape(sum(foreground_pixels,2),RR,CC);
    Images1                    = foreground_map;   
    objects_map                = zeros(size(foreground_map),'int32');
    object_sizes               = [];
    Obj_pos                    = [];
    new_label                  = 1;
    %计算连通区域
    [label_map,num_labels]     = bwlabel(foreground_map,8);

    for label = 1:num_labels 
       object      = (label_map == label);
       object_size = sum(sum(object));
       if(object_size >= Comp_Thresh)
          objects_map             = objects_map + int32(object * new_label);
          object_sizes(new_label) = object_size;
          [X,Y]                   = meshgrid(1:CC,1:RR);    
          object_x                = X.*object;
          object_y                = Y.*object;
          Obj_pos(:,new_label)    = [sum(sum(object_x)) / object_size;
                                     sum(sum(object_y)) / object_size];
          new_label               = new_label + 1;
       end
    end
    num_objects = new_label - 1;
    %去除阴影
    index                       = sub2ind(size(Mus),reshape(repmat([1:D],CRGB,1),D*CRGB,1),reshape(repmat(bg_gauss_good',CRGB,1),D*CRGB,1),repmat([1:CRGB]',D,1));
    background                  = reshape(Mus(index),CRGB,D);
    background                  = reshape(background',RR,CC,CRGB); 
    background                  = uint8(background);
    if  indxx <= 500;
        background_Update           = background;
    else
        background_Update           = background_Update;
    end
        
    
    
    background_hsv              = rgb2hsv(background);
    image_hsv                   = rgb2hsv(pixel_original2);
    for i = 1:RR
        for j = 1:CC      
            if (objects_map(i,j))&&...
               (abs(image_hsv(i,j,1)-background_hsv(i,j,1))<SHADOWS(1))&&...
               (image_hsv(i,j,2)-background_hsv(i,j,2)<SHADOWS(2))&&...
               (SHADOWS(3)<=image_hsv(i,j,3)/background_hsv(i,j,3)<=SHADOWS(4))
               Shadows(i,j) = 1;  
            else
               Shadows(i,j) = 0;  
            end               
        end    
    end
    Images0           = objects_map;
    objecs_adjust_map = Shadows;
    Images2           = objecs_adjust_map;    
    
    
    
    
    %%
    %根据像素所在区域大小比例以及纹理特征分析获得人密度
    %腐蚀处理
    se        = strel('ball',6,6);
    Images2BW = floor(abs(imdilate(Images2,se)-5));
    Images3BW = zeros(size(Images2BW));
    X1 = round(168/2);
    X2 = round(363/2);
    Y1 = round(204/2);
    Y2 = round(339/2);
    if indxx > 80;
       %计算区域内像素值
       S1           = sum(sum(Images2BW(Y1:Y2,X1:X2)));
       S2(indxx-80) = S1/((X2-X1)*(Y2-Y1)); 
    end
    Images3BW(Y1:Y2,X1:X2)   = Images2BW(Y1:Y2,X1:X2);
    Images3Brgb              = pixel_original2(Y1:Y2,X1:X2,:);
    %纹理检测
    %计算纹理
    [A,B]     = func_wenli(rgb2gray(Images3Brgb));
    %选择能量 熵作为判断依据
    if indxx > 80;
       F1(indxx-80) = A(1);
       F2(indxx-80) = A(2);
       F3(indxx-80) = A(3);
    end
    if indxx > 80;
        load train_model.mat
        P     = [S2(indxx-80);F2(indxx-80)];
        y     = round(NET(P));


        if y == 1
           set(handles.text2,'String','低密度'); 
           set(handles.text2,'ForegroundColor',[0 1 0]) ;
        end
        if y == 2
           set(handles.text2,'String','中密度');  
           set(handles.text2,'ForegroundColor',[1 1 0]) ;
        end    
        if y == 3
           set(handles.text2,'String','高密度');   
           set(handles.text2,'ForegroundColor',[1 0 0]) ;
        end    
    end
    
    
    
    
    axes(handles.axes1)
    imshow(pixel_original2);
%     title('定位检测区域');
    hold on
    line([X1,X2],[Y1,Y1],'LineWidth',1,'Color',[0 1 0]);
    hold on
    line([X2,X2],[Y1,Y2],'LineWidth',1,'Color',[0 1 0]);
    hold on
    line([X2,X1],[Y2,Y2],'LineWidth',1,'Color',[0 1 0]);    
    hold on
    line([X1,X1],[Y2,Y1],'LineWidth',1,'Color',[0 1 0]); 
    
    
    axes(handles.axes2)
    imshow(uint8(background_Update));
%     title('背景获得');
    
 
    axes(handles.axes3)
    imshow(Images0,[]);
%     title('动态背景提取');    
    axes(handles.axes4)
    imshow(Images3BW,[]);
%     title('动态背景提取(检测区域内)');       
    
    
    pause(0.0000001);
end

4.仿真结果

以上是关于人员密度检测基于形态学处理和GRNN网络的人员密度检测matlab仿真的主要内容,如果未能解决你的问题,请参考以下文章

人群密度识别系统能实现那些功能?

深度学习上的又一重点发现——利用MSCNN实现人群密度监测

基于密度的图聚类算法 SCAN

NSCT+GRNN网络基于NSCT变换和GRNN神经网络的无参考图像质量检测算法的MATLAB仿真

WiFi信号弱?大型场馆高密度WiFi无线网络覆盖

快速写入的高密度MRAM技术