如何使用 Python 隐藏图像中的数据
Posted AI科技大本营
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何使用 Python 隐藏图像中的数据相关的知识,希望对你有一定的参考价值。
作者 | 小白
来源 | 小白学视觉
隐写术是在任何文件中隐藏秘密数据的艺术。
秘密数据可以是任何格式的数据,如文本甚至文件。简而言之,隐写术的主要目的是隐藏任何文件(通常是图像、音频或视频)中的预期信息,而不实际改变文件的外观,即文件外观看起来和以前一样。
在这篇文章中,我们将重点学习基于图像的隐写术,即在图像中隐藏秘密数据。
但在深入研究之前,让我们先看看图像由什么组成:
像素是图像的组成部分。
每个像素包含三个值:(红色、绿色、蓝色)也称为 RGB 值。
每个 RGB 值的范围从 0 到 255。
现在,让我们看看如何将数据编码和解码到我们的图像中。
编码
有很多算法可以用来将数据编码到图像中,实际上我们也可以自己制作一个。在这篇文章中使用的一个很容易理解和实现的算法。
算法如下:
对于数据中的每个字符,将其 ASCII 值转换为 8 位二进制 [1]。
一次读取三个像素,其总 RGB 值为 3*3=9 个。前八个 RGB 值用于存储一个转换为 8 位二进制的字符。
比较相应的RGB值和二进制数据。如果二进制数字为 1,则 RGB 值将转换为奇数,否则为偶数。
第 9 个值确定是否应该读取更多像素。如果有更多数据要读取,即编码或解码,则第 9 个像素变为偶数;否则,如果我们想停止进一步读取像素,那就让它变得奇数。
重复这个过程,直到所有数据都被编码到图像中。
例子
假设要隐藏的消息是‘Hii’。
消息是三个字节,因此,对数据进行编码所需的像素为 3 x 3 = 9。考虑一个 4 x 3 的图像,总共有 12 个像素,这足以对给定的数据进行编码。
[(27, 64, 164), (248, 244, 194), (174, 246, 250), (149, 95, 232),
(188, 156, 169), (71, 167, 127), (132, 173, 97), (113, 69, 206),
(255, 29, 213), (53, 153, 220), (246, 225, 229), (142, 82, 175)]
第 1 步
H 的 ASCII 值为 72 ,其二进制等效值为 01001000 。
第 2 步
读取前三个像素。
(27, 64, 164), (248, 244, 194), (174, 246, 250)
第 3 步
现在,将像素值更改为奇数为 1,偶数为 0,就像在二进制等效数据中一样。
例如,第一个二进制数字是0,第一个 RGB 值是 27 ,它需要转换为偶数,这意味着 26 。类似地,64 被转换为 63 因为下一个二进制数字是1 所以 RGB 值应该是奇数。
因此,修改后的像素为:
(26, 63, 164), (248, 243, 194), (174, 246, 250)
第4步
由于我们必须对更多数据进行编码,因此最后一个值应该是偶数。同样,i可以在这个图像中进行编码。
通过执行 +1 或 -1 使像素值成为奇数/偶数时,我们应该注意二进制条件。即像素值应大于或等于 0 且小于或等于 255 。
新图像将如下所示:
[(26, 63, 164), (248, 243, 194), (174, 246, 250), (148, 95, 231),
(188, 155, 168), (70, 167, 126), (132, 173, 97), (112, 69, 206),
(254, 29, 213), (53, 153, 220), (246, 225, 229), (142, 82, 175)]
解码
对于解码,我们将尝试找到如何逆转之前我们用于数据编码的算法。
同样,一次读取三个像素。前 8 个 RGB 值为我们提供了有关机密数据的信息,第 9 个值告诉我们是否继续前进。
对于前八个值,如果值为奇数,则二进制位为 1 ,否则为 0 。
这些位连接成一个字符串,每三个像素,我们得到一个字节的秘密数据,这意味着一个字符。
现在,如果第 9 个值是偶数,那么我们继续一次读取三个像素,否则,我们停止。
例如
让我们开始一次读取三个像素。
考虑我们之前编码的图像。
[(26, 63, 164), (248, 243, 194), (174, 246, 250), (148, 95, 231),
(188, 155, 168), (70, 167, 126), (132, 173, 97), (112, 69, 206),
(254, 29, 213), (53, 153, 220), (246, 225, 229), (142, 82, 175)]
第1步
我们首先读取三个像素:
[(26, 63, 164), (248, 243, 194), (174, 246, 250)
第2步
读取第一个值:26,它是偶数,因此二进制位是 0 。类似地,对于 63 ,二进制位是 1 ,对于 164 它是 0 。这个过程一直持续到 8 个 RGB 值。
第 3 步
将所有二进制值连接后,我们最终得到二进制值:01001000。最终的二进制数据对应于十进制值 72,在 ASCII 中,它代表字符 H 。
第 4 步
由于第 9 个值是偶数,我们重复上述步骤。当遇到的第 9 个值是奇数时,我们停止。
结果,我们得到了原始信息,即 Hii 。
上述算法的 Python 程序如下:
# Python program implementing Image Steganography
# PIL module is used to extract
# pixels of image and modify it
from PIL import Image
# Convert encoding data into 8-bit binary
# form using ASCII value of characters
def genData(data):
# list of binary codes
# of given data
newd = []
for i in data:
newd.append(format(ord(i), '08b'))
return newd
# Pixels are modified according to the
# 8-bit binary data and finally returned
def modPix(pix, data):
datalist = genData(data)
lendata = len(datalist)
imdata = iter(pix)
for i in range(lendata):
# Extracting 3 pixels at a time
pix = [value for value in imdata.__next__()[:3] +
imdata.__next__()[:3] +
imdata.__next__()[:3]]
# Pixel value should be made
# odd for 1 and even for 0
for j in range(0, 8):
if (datalist[i][j] == '0' and pix[j]% 2 != 0):
pix[j] -= 1
elif (datalist[i][j] == '1' and pix[j] % 2 == 0):
if(pix[j] != 0):
pix[j] -= 1
else:
pix[j] += 1
# pix[j] -= 1
# Eighth pixel of every set tells
# whether to stop ot read further.
# 0 means keep reading; 1 means thec
# message is over.
if (i == lendata - 1):
if (pix[-1] % 2 == 0):
if(pix[-1] != 0):
pix[-1] -= 1
else:
pix[-1] += 1
else:
if (pix[-1] % 2 != 0):
pix[-1] -= 1
pix = tuple(pix)
yield pix[0:3]
yield pix[3:6]
yield pix[6:9]
def encode_enc(newimg, data):
w = newimg.size[0]
(x, y) = (0, 0)
for pixel in modPix(newimg.getdata(), data):
# Putting modified pixels in the new image
newimg.putpixel((x, y), pixel)
if (x == w - 1):
x = 0
y += 1
else:
x += 1
# Encode data into image
def encode():
img = input("Enter image name(with extension) : ")
image = Image.open(img, 'r')
data = input("Enter data to be encoded : ")
if (len(data) == 0):
raise ValueError('Data is empty')
newimg = image.copy()
encode_enc(newimg, data)
new_img_name = input("Enter the name of new image(with extension) : ")
newimg.save(new_img_name, str(new_img_name.split(".")[1].upper()))
# Decode the data in the image
def decode():
img = input("Enter image name(with extension) : ")
image = Image.open(img, 'r')
data = ''
imgdata = iter(image.getdata())
while (True):
pixels = [value for value in imgdata.__next__()[:3] +
imgdata.__next__()[:3] +
imgdata.__next__()[:3]]
# string of binary data
binstr = ''
for i in pixels[:8]:
if (i % 2 == 0):
binstr += '0'
else:
binstr += '1'
data += chr(int(binstr, 2))
if (pixels[-1] % 2 != 0):
return data
# Main Function
def main():
a = int(input(":: Welcome to Steganography ::\\n"
"1. Encode\\n2. Decode\\n"))
if (a == 1):
encode()
elif (a == 2):
print("Decoded Word : " + decode())
else:
raise Exception("Enter correct input")
# Driver Code
if __name__ == '__main__' :
# Calling main function
main()
程序中使用的模块是 PIL ,它代表Python 图像库,它使我们能够在 Python 中对图像执行操作。
程序执行
数据编码
数据解码
输入图像
输出图像
局限性
该程序可能无法对 JPEG 图像按预期处理,因为 JPEG 使用有损压缩,这意味着修改像素以压缩图像并降低质量,因此会发生数据丢失。
参考
https://www.geeksforgeeks.org/program-decimal-binary-conversion/
https://www.geeksforgeeks.org/working-images-python/
https://dev.to/erikwhiting88/let-s-hide-a-secret-message-in-an-image-with-python-and-opencv-1jf5
A code along with the dependencies can be found here: https://github.com/goelashwin36/image-steganography
往
期
回
顾
资讯
技术
技术
技术
分享
点收藏
点点赞
点在看
以上是关于如何使用 Python 隐藏图像中的数据的主要内容,如果未能解决你的问题,请参考以下文章
如何在Python框架Flask中将图像文件从表单上传到数据库