高精度模板

Posted Jozky86

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了高精度模板相关的知识,希望对你有一定的参考价值。

看到一个非常不错的高精度模板,记录一下

#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int base = 1e8;
const int N = 1e4 + 10;
int aux[N << 3];
struct bigint 
	int s[N], l;
	void CL()  l = 0; memset(s, 0, sizeof(s)); 
	void pr()
	
		printf("%d", s[l]);
		for (int i = l - 1; i; i--)
			printf("%08d", s[i]);
	
	void re_l()
	
		int i, x = 0, k = 1, L = 0, fl, o;
		char c = getchar();
		for (; c < '0' || c > '9'; c = getchar());
		for (; c >= '0' && c <= '9'; c = getchar())
		
			if (!(L - 1) && !aux[L])
				L--;
			aux[++L] = c - '0';
		
		CL();
		l = L / 8 + ((o = L % 8) > 0);
		for (i = 1; i <= o; i++)
			x = x * 10 + aux[i];
		if (o)
			s[l] = x;
		for (fl = !o ? l + 1 : l, i = o + 1, x = 0; i <= L; i++, k++)
		
			x = x * 10 + aux[i];
			if (!(k ^ 8))
				s[--fl] = x, x = k = 0;
		
		if (!l)
			l = 1;
	
	ll toint()
	
		ll x = 0;
		for (int i = l; i; i--)
			x = x * base + s[i];
		return x;
	
	bigint operator = (int b)
	
		CL();
		do
		
			s[++l] = b % base;
			b /= base;
		 while (b > 0);
		return *this;
	
	bigint operator = (ll b)
	
		CL();
		do
		
			s[++l] = b % base;
			b /= base;
		 while (b > 0);
		return *this;
	
	bigint operator + (const int& b)
	
		bigint c = *this;
		ll x = b;
		for (int i = 1; i <= l && x; i++)
		
			x = x + c.s[i];
			c.s[i] = x % base;
			x /= base;
		
		if (x)
			c.s[++c.l] = x;
		return c;
	
	bigint operator + (const ll & b)
	
		bigint c = *this;
		ll x = b;
		for (int i = 1; i <= l && x; i++)
		
			x = x + c.s[i];
			c.s[i] = x % base;
			x /= base;
		
		if (x)
			c.s[++c.l] = x;
		return c;
	
	bigint operator + (bigint & b)
	
		if (b.l < 3)
			return *this + b.toint();
		bigint c;
		ll x = 0;
		int k = l < b.l ? b.l : l;
		c.CL(); c.l = k;
		for (int i = 1; i <= k; i++)
		
			x = x + s[i] + b.s[i];
			c.s[i] = x % base;
			x /= base;
		
		if (x)
			c.s[++c.l] = x;
		return c;
	
	bigint operator - (const bigint & b)
	
		bigint c, d = *this;
		ll x = 0;
		c.CL();
		for (int i = 1; i <= l; i++)
		
			if ((x = d.s[i]) < b.s[i])
			
				d.s[i + 1]--;
				x += base;
			
			c.s[i] = x - b.s[i];
		
		c.l = l;
		for (; !c.s[c.l] && c.l > 1; c.l--);
		return c;
	
	bigint operator - (const int& b)  bigint c; return *this - (c = b); 
	bigint operator - (const ll & b)  bigint c; return *this - (c = b); 
	bigint operator * (const int& b)
	
		bigint c;
		ll x = 0;
		c.CL();
		for (int i = 1; i <= l; i++)
		
			x = x + 1LL * s[i] * b;
			c.s[i] = x % base;
			x /= base;
		
		for (c.l = l; x; x /= base)
			c.s[++c.l] = x % base;
		return c;
	
	bigint operator * (bigint & b)
	
		if (b.l < 2)
			return *this * b.toint();
		bigint c;
		ll x;
		int i, j, k;
		c.CL();
		for (i = 1; i <= l; i++)
		
			x = 0;
			for (j = 1; j <= b.l; j++)
			
				x = x + 1LL * s[i] * b.s[j] + c.s[k = i + j - 1];
				c.s[k] = x % base;
				x /= base;
			
			if (x)
				c.s[i + b.l] = x;
		
		for (c.l = l + b.l; !c.s[c.l] && c.l > 1; c.l--);
		return c;
	
	bigint operator * (const ll & b)
	
		bigint c;
		if (b > 2e9)
		
			c = b;
			return *this* c;
		
		ll x = 0;
		c.CL();
		for (int i = 1; i <= l; i++)
		
			x = x + b * s[i];
			c.s[i] = x % base;
			x /= base;
		
		for (c.l = l; x; x /= base)
			c.s[++c.l] = x % base;
		return c;
	
	bigint operator / (const int& b)
	
		bigint c;
		ll x = 0;
		c.CL();
		for (int i = l; i; i--)
		
			c.s[i] = (x * base + s[i]) / b;
			x = (x * base + s[i]) % b;
		
		for (c.l = l; !c.s[c.l] && c.l > 1; c.l--);
		return c;
	
	bigint operator / (const ll & b)
	
		bigint c;
		ll x = 0;
		c.CL();
		for (int i = l; i; i--)
		
			c.s[i] = (x * base + s[i]) / b;
			x = (x * base + s[i]) % b;
		
		for (c.l = l; !c.s[c.l] && c.l > 1; c.l--);
		return c;
	
	bigint operator / (bigint & b)
	
		if (b.l < 2)
			return *this / b.toint();
		bigint c, d;
		int i, j, le, r, mid, k;
		c.CL(); d.CL();
		for (i = l; i; i--)
		
			for (j = ++d.l; j > 1; j--)
				d.s[j] = d.s[j - 1];
			d.s[1] = s[i];
			if (d < b)
				continue;
			le = k = 0; r = base - 1;
			while (le <= r)
			
				mid = (le + r) >> 1;
				b * mid <= d ? le = mid + 1, k = mid : r = mid - 1;
			
			c.s[i] = k; d = d - b * k;
		
		for (c.l = l; !c.s[c.l] && c.l > 1; c.l--);
		return c;
	
	bigint operator % (const int& b)
	
		bigint c;
		ll x = 0;
		c.CL();
		for (int i = l; i; i--)
			x = (x * base + s[i]) % b;
		return c = x;
	
	bigint operator % (const ll & b)
	
		bigint c;
		ll x = 0;
		c.CL();
		for (int i = l; i; i--)
			x = (x * base + s[i]) % b;
		return c = x;
	
	bigint operator % (bigint & b)
	
		if (b.l < 2)
			return *this % b.toint();
		bigint c;
		int i, j, le, r, mid, k;
		c.CL();
		for (i = l; i; i--)
		
			for (j = ++c.l; j > 1; j--)
				c.s[j] = c.s[j - 1];
			c.s[1] = s[i];
			if (c < b)
				continue;
			le = k = 0; r = base - 1;
			while (le <= r)
			
				mid = (le + r) >> 1;
				b * mid <= c ? le = mid + 1, k = mid : r = mid - 1;
			
			c = c - b * k;
		
		for (; !c.s[c.l] && c.l > 1; c.l--);
		return c;
	
	bigint operator += (bigint & b)  return *this = *this + b; 
	bigint operator += (ll b)  return *this = *this + b; 
	bigint operator += (int b)  return *this = *this + b; 
	bigint operator -= (bigint & b)  return *this = *this - b; 
	bigint operator -= (ll b)  return *this = *this - b; 
	bigint operator -= (int b)  return *this = *this - b; 
	bigint operator *= (bigint & b)  return *this = *this * b; 
	bigint operator *= (ll b)  return *this = *this * b; 
	bigint operator *= (int b)  return *this = *this 大数高精度运算(模板)

高精度模板

『模板 高精度计算』

模板 — 高精度计算

高精度模板

高精度模板