HBase Region Locality
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HBase Region Locality相关的知识,希望对你有一定的参考价值。
参考技术A 因为DataNode和RegionServer通常会部署在相同的机器上,所以会产生Locality这样的概念。HBase的Locality是通过HDFS的Block复制实现的。在复制Block时,HBase是这样选择副本的位置的:
就是这样,在flush或compact后,HBase的Region实现了Locality。
当一个RegionServer处在failover的情况下(rebalance或重启)时,可能会分配到一些没有本地StoreFiles的Region(因为此时没有可用的本地副本)。然而,有新数据再写入这些Region的时候,或者是对表进行compact的时候,StoreFiles将会被重写,这些Region也会再次变成RegionServer的“local”Region。
有一个相关的指标“data locality”,即Region保存在本地的StoreFile的百分比。这个指标影响了major compact的执行。
Hbase的region合并与拆分详解
1、region 拆分机制-
region中存储的是大量的rowkey数据 ,当region中的数据条数过多的时候,直接影响查询效率.当region过大的时候.hbase会拆分region , 这也是Hbase的一个优点 .
-
HBase的region split策略一共有以下几种:
-
1、ConstantSizeRegionSplitPolicy
- 0.94版本前默认切分策略
-
当region大小大于某个阈值(hbase.hregion.max.filesize=10G)之后就会触发切分,一个region等分为2个region。
- 但是在生产线上这种切分策略却有相当大的弊端:切分策略对于大表和小表没有明显的区分。阈值(hbase.hregion.max.filesize)设置较大对大表比较友好,但是小表就有可能不会触发分裂,极端情况下可能就1个,这对业务来说并不是什么好事。如果设置较小则对小表友好,但一个大表就会在整个集群产生大量的region,这对于集群的管理、资源使用、failover来说都不是一件好事。
-
2、IncreasingToUpperBoundRegionSplitPolicy
-
0.94版本~2.0版本默认切分策略
-
切分策略稍微有点复杂,总体看和ConstantSizeRegionSplitPolicy思路相同,一个region大小大于设置阈值就会触发切分。但是这个阈值并不像ConstantSizeRegionSplitPolicy是一个固定的值,而是会在一定条件下不断调整,调整规则和region所属表在当前regionserver上的region个数有关系.
- region split的计算公式是:
regioncount^3 128M 2,当region达到该size的时候进行split
例如:
第一次split:1^3 256 = 256MB
第二次split:2^3 256 = 2048MB
第三次split:3^3 256 = 6912MB
第四次split:4^3 256 = 16384MB > 10GB,因此取较小的值10GB
后面每次split的size都是10GB了
-
-
3、SteppingSplitPolicy
-
2.0版本默认切分策略
- 这种切分策略的切分阈值又发生了变化,相比 IncreasingToUpperBoundRegionSplitPolicy 简单了一些,依然和待分裂region所属表在当前regionserver上的region个数有关系,如果region个数等于1,
切分阈值为flush size * 2,否则为MaxRegionFileSize。这种切分策略对于大集群中的大表、小表会比 IncreasingToUpperBoundRegionSplitPolicy 更加友好,小表不会再产生大量的小region,而是适可而止。
-
-
4、KeyPrefixRegionSplitPolicy
- 根据rowKey的前缀对数据进行分组,这里是指定rowKey的前多少位作为前缀,比如rowKey都是16位的,指定前5位是前缀,那么前5位相同的rowKey在进行region split的时候会分到相同的region中。
-
5、DelimitedKeyPrefixRegionSplitPolicy
- 保证相同前缀的数据在同一个region中,例如rowKey的格式为:userid_eventtypeeventid,指定的delimiter为 ,则split的的时候会确保userid相同的数据在同一个region中。
- 6、DisabledRegionSplitPolicy
- 不启用自动拆分, 需要指定手动拆分
2、region合并机制
- 不启用自动拆分, 需要指定手动拆分
1.1 region合并说明
- Region的合并不是为了性能, 而是出于维护的目的 .
- 比如删除了大量的数据 ,这个时候每个Region都变得很小 ,存储多个Region就浪费了 ,这个时候可以把Region合并起来,进而可以减少一些Region服务器节点
1.2 如何进行region合并
1.2.1 通过Merge类冷合并Region
-
执行合并前,==需要先关闭hbase集群==
- 创建一张hbase表:
create ‘test‘,‘info1‘,SPLITS => [‘1000‘,‘2000‘,‘3000‘]
- 查看表region
-
需求:
需要把test表中的2个region数据进行合并:
test,,1565940912661.62d28d7d20f18debd2e7dac093bc09d8.
test,1000,1565940912661.5b6f9e8dad3880bcc825826d12e81436. -
这里通过org.apache.hadoop.hbase.util.Merge类来实现,不需要进入hbase shell,直接执行(==需要先关闭hbase集群==):
hbase org.apache.hadoop.hbase.util.Merge test test,,1565940912661.62d28d7d20f18debd2e7dac093bc09d8. test,1000,1565940912661.5b6f9e8dad3880bcc825826d12e81436. - 成功后界面观察
1.2.2 通过online_merge热合并Region
-
==不需要关闭hbase集群==,在线进行合并
-
与冷合并不同的是,online_merge的传参是Region的hash值,而Region的hash值就是Region名称的最后那段在两个.之间的字符串部分。
-
需求:需要把test表中的2个region数据进行合并:
test,2000,1565940912661.c2212a3956b814a6f0d57a90983a8515.
test,3000,1565940912661.553dd4db667814cf2f050561167ca030. -
需要进入hbase shell:
merge_region ‘c2212a3956b814a6f0d57a90983a8515‘,‘553dd4db667814cf2f050561167ca030‘
-
成功后观察界面
merge_region ‘c2212a3956b814a6f0d57a90983a8515‘,‘553dd4db667814cf2f050561167ca030‘ - 成功后观察界面
以上是关于HBase Region Locality的主要内容,如果未能解决你的问题,请参考以下文章