python查看数据集的结构 (用dict实现switch-case)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python查看数据集的结构 (用dict实现switch-case)相关的知识,希望对你有一定的参考价值。

参考技术A 做机器学习的经常需要处理数据集,可能是json,mat,h5各种格式的,里面有各种标签结构。
了解数据集的结构、格式、类型,对我们处理数据是有帮助的。
写了一个有通用性的程序,
在此用来查看mscoco数据集的json注释,相同级别的数据使用了相同的缩进。

这里列举了对5种类型的处理,要处理其他类型,仿照加进去就是了。
python没有switch-case结构,可以用dict实现。

运行结果:

可以清晰的看出,annotations是dict类型,有5个key,以及每个项分别的类型和详情。

用 Python 表示图(数据结构)

【中文标题】用 Python 表示图(数据结构)【英文标题】:Representing graphs (data structure) in Python 【发布时间】:2013-10-28 15:31:51 【问题描述】:

如何在Python 中巧妙地表示graph? (从头开始,即没有库!)什么数据结构(例如 dicts/tuples/dict(tuples))既快又节省内存?必须能够在上面做各种图形operations . 正如所指出的,各种graph representations 可能会有所帮助。如何在 Python 中实现它们?至于库,this question 有很好的答案。

【问题讨论】:

已经有很多库了:graph-tool.skewed.de/performance、code.google.com/p/python-graph、networkx.github.io 要实现 Graph,请查看 Wikipedia 文章,该文章列出了常见的实现及其在内存和速度方面的效率:en.wikipedia.org/wiki/… 你可以试试 GitHub.com/thePastor/pangaia。使用标准库的 defaultdict 需要稍微重写(在编写代码时它还没有出现)。它使用递归数据结构使其比其他实现更优雅。 对于有向图,这个essay from python.org 建议dictlists。基本上类似于<parent>: [<child>, ...], ... 您可以使用字典作为邻接列表,将键作为节点,将值作为每个键的相邻节点列表。 【参考方案1】:

NetworkX 是一个很棒的 Python 图形库。你会很难找到你需要但它还没有做的东西。

而且它是开源的,因此您可以看到他们如何实现他们的算法。您还可以添加其他算法。

https://github.com/networkx/networkx/tree/master/networkx/algorithms

【讨论】:

这就是为什么 NetworkX 是一个很棒的资源。它是开源的,所以你可以看到他们是如何实现他们的算法的。您还可以添加其他算法。 graph.py --> class Graph 的代码大约有 2000 行。我只想看看他们如何使用__iter__【参考方案2】:

首先,经典 listmatrix 表示的选择取决于目的(取决于您想对表示做什么)。众所周知的问题和算法都与选择有关。抽象表示类型的选择决定了它应该如何实现。

其次,问题是顶点和边是否应该仅根据存在来表示,或者它们是否携带一些额外的信息。

从 Python 内置数据类型的角度来看,其他地方包含的任何值都表示为对目标对象的(隐藏)引用。如果它是一个变量(即命名引用),那么名称和引用总是存储在(内部)字典中。如果您不需要名称,则可以将引用存储在您自己的容器中——这里可能 Python 列表 将始终用于 list 作为抽象。

Python list 实现为引用的动态数组,Python tuple 实现为具有恒定内容的静态引用数组(引用的值不能更改)。因此,它们可以很容易地被索引。这样,列表也可以用于矩阵的实现。

表示矩阵的另一种方式是由标准模块array 实现的数组——在存储类型、同质值方面更受限制。元素直接存储值。 (该列表存储对值对象的引用)。这样,内存效率更高,访问值也更快。

有时,您可能会发现有用的更受限制的表示形式,例如 bytearray

【讨论】:

【参考方案3】:

尽管这是一个有点老的问题,但我想我会为遇到此问题的任何人提供一个实用的答案。

假设您将连接的输入数据作为元组列表获取,如下所示:

[('A', 'B'), ('B', 'C'), ('B', 'D'), ('C', 'D'), ('E', 'F'), ('F', 'C')]

我发现对 Python 中的图最有用和最有效的数据结构是 集合字典。这将是我们Graph 类的底层结构。您还必须知道这些连接是弧(有向,单向连接)还是边(无向,双向连接)。我们将通过将directed 参数添加到Graph.__init__ 方法来处理这个问题。我们还将添加一些其他有用的方法。

import pprint
from collections import defaultdict


class Graph(object):
    """ Graph data structure, undirected by default. """

    def __init__(self, connections, directed=False):
        self._graph = defaultdict(set)
        self._directed = directed
        self.add_connections(connections)

    def add_connections(self, connections):
        """ Add connections (list of tuple pairs) to graph """

        for node1, node2 in connections:
            self.add(node1, node2)

    def add(self, node1, node2):
        """ Add connection between node1 and node2 """

        self._graph[node1].add(node2)
        if not self._directed:
            self._graph[node2].add(node1)

    def remove(self, node):
        """ Remove all references to node """

        for n, cxns in self._graph.items():  # python3: items(); python2: iteritems()
            try:
                cxns.remove(node)
            except KeyError:
                pass
        try:
            del self._graph[node]
        except KeyError:
            pass

    def is_connected(self, node1, node2):
        """ Is node1 directly connected to node2 """

        return node1 in self._graph and node2 in self._graph[node1]

    def find_path(self, node1, node2, path=[]):
        """ Find any path between node1 and node2 (may not be shortest) """

        path = path + [node1]
        if node1 == node2:
            return path
        if node1 not in self._graph:
            return None
        for node in self._graph[node1]:
            if node not in path:
                new_path = self.find_path(node, node2, path)
                if new_path:
                    return new_path
        return None

    def __str__(self):
        return '()'.format(self.__class__.__name__, dict(self._graph))

我将把它作为“读者练习”来创建find_shortest_path 和其他方法。

让我们看看实际情况......

>>> connections = [('A', 'B'), ('B', 'C'), ('B', 'D'),
                   ('C', 'D'), ('E', 'F'), ('F', 'C')]
>>> g = Graph(connections, directed=True)
>>> pretty_print = pprint.PrettyPrinter()
>>> pretty_print.pprint(g._graph)
'A': 'B',
 'B': 'D', 'C',
 'C': 'D',
 'E': 'F',
 'F': 'C'

>>> g = Graph(connections)  # undirected
>>> pretty_print = pprint.PrettyPrinter()
>>> pretty_print.pprint(g._graph)
'A': 'B',
 'B': 'D', 'A', 'C',
 'C': 'D', 'F', 'B',
 'D': 'C', 'B',
 'E': 'F',
 'F': 'E', 'C'

>>> g.add('E', 'D')
>>> pretty_print.pprint(g._graph)
'A': 'B',
 'B': 'D', 'A', 'C',
 'C': 'D', 'F', 'B',
 'D': 'C', 'E', 'B',
 'E': 'D', 'F',
 'F': 'E', 'C'

>>> g.remove('A')
>>> pretty_print.pprint(g._graph)
'B': 'D', 'C',
 'C': 'D', 'F', 'B',
 'D': 'C', 'E', 'B',
 'E': 'D', 'F',
 'F': 'E', 'C'

>>> g.add('G', 'B')
>>> pretty_print.pprint(g._graph)
'B': 'D', 'G', 'C',
 'C': 'D', 'F', 'B',
 'D': 'C', 'E', 'B',
 'E': 'D', 'F',
 'F': 'E', 'C',
 'G': 'B'

>>> g.find_path('G', 'E')
['G', 'B', 'D', 'C', 'F', 'E']

【讨论】:

尽管这个问题已经很老了,但我想这正是我当时所期待的答案。该示例确实有助于解释如何在保持其非常简单的同时进行实施。可以从不同的开源库中找到实现,但解释并不相同。谢谢! 需要什么样的修改来增加边缘的权重? @pshirishreddy 有趣的问题!我没有想到这一点,但我的直觉是使用heapq lib 来堆积元组列表而不是集合。例如,该图将是堆的字典,例如:_graph = 'A': heapify([(0.3, 'D'), (0.5, 'B'), (0.75, 'A'), (0.9, 'C')])(注意:您实际上不会像这样使用heapify,请阅读库的帮助),然后您可以使用heapq 函数插入和得到加权边缘。 @mVChr 这意味着log 时间访问。但是如何扩展你用来映射 nodeID 和 weight 的字典呢? 您好,可以将此数据结构称为邻接表实现吗?【参考方案4】:

有两个优秀的图形库 NetworkX 和 igraph。你可以在 GitHub 上找到这两个库的源代码。您总是可以看到函数是如何编写的。但我更喜欢 NetworkX,因为它易于理解。 查看他们的代码以了解他们如何实现这些功能。您将获得多种想法,然后可以选择使用数据结构制作图表的方式。

【讨论】:

以上是关于python查看数据集的结构 (用dict实现switch-case)的主要内容,如果未能解决你的问题,请参考以下文章

python数据结构:以链表为底层原理重新实现字典dict

用 Python 表示图(数据结构)

Python处理json和dict

深入理解 Python 虚拟机:字典(dict)的优化

Python采用平衡二叉树实现一个字典类Dict | 附源码+视频

python dict用法