“Python”有啥缺点?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了“Python”有啥缺点?相关的知识,希望对你有一定的参考价值。
参考技术Apython的整个系统,我其实有非常多的不满。但是用任何一门语言都是取舍问题,如果有一门语言,库够多,已读,易用,性能高,我毫不犹豫立刻转过去。python的强处在于庞大的库,还有非常好的易读和易用性。但是相比来说,性能一直是个问题。python的实现性能大约和C相差五倍上下。如果是大规模计算问题,大约能差10倍以上。当然,我们可以写C扩展,但是这就不是使用python了。我们也可以说,很多时候我们不需要这么快的速度。这是个事实,但是不改变python性能差的事实。 python不但性能差,还有GIL这个玩意。以至于我现在对高并发计算都采取多进程的模式。多进程模式的通讯效率肯定比多线程低,而且麻烦。
另外,python在底层设计上,也表现出很强的实用主义倾向。这是比较外交术语的词汇,更加直白的说法应当是,混乱,不知所谓。在闭包设计上采用free variable设计,而不是lisp中的environs设计。区别?你试试看在外层闭包中from lib import *。由于引入不定个数名称,free variable无法处理。类似的问题还有LEGB规则,新手往往要花很长时间研究这个例子究竟是怎么错的: a = 1 def f(): print a a = 2 我勒个去,这种反直观反人类的事情都有,还敢说自己易读。
还有坑爹的元编程,这东西根本是坑爹中的坑爹货。如果你用过多重继承,大概就知道python的整个OO系统看起来根本是大型的仿真,到处都是乱糟糟的。C++怎么解决多重继承的?你最好别用(真心说,这可比python更加坑爹)。java怎么解决多重继承的,只能继承Interface。其实这是变相的变成了Interface-Implement模式。python怎么解决的?MRO!为什麽一个类加个__metaclass__就会改变性质啊,为什麽一个类去生成另一个类的写法是——我基本不记得了,反正web.py里面有用到,需要的话去炒栗子吧。为什麽方法要隐藏居然要改名字加__啊。你到底是在做OO还是在看起来像OO的东西上狂打补丁啊魂淡。
lambda表达式弱智。我和人讨论过,lambda是否是图灵完备的。结论还是完备的,不过需要借助Y combinator。何必呢?由于强调lambda的快速特性,因此将lambda强制在一行以内(没有结束标记),导致python其实是没有匿名函数的。一个callback数组写的难过死。
语法糖太多了点,当然,这是纯粹的个人感觉。语法糖是把双刃剑,用的好,可以简化编写和阅读,但是太多,往往容易引入语法混乱和额外的约束。
另外,语言的自构建特性混乱。虽说不是每门语言都强调自构建特性,但是通常而言,都是使用C实现一个内核,由内核实现一些基础操作。再由基础操作实现更复杂的操作。每层的边界都是比较清晰的。谁来告诉我,python中有多少库在移植时是由纯python实现的?库的相互依赖层级是?
python的沙盒化也是个问题,如果沙盒做的够好,我完全可以把python作为一个客户级别的平台。用C写一个很简单的类似浏览器的东西,下载一个URL的python包回去运行(或者仅仅检查更新)。从而保证本地效果/跨平台/安全性。现在?一个都保证不了。我连把一个python包转移到另一台同构设备上都很麻烦(如果两者不是严格匹配,例如系统差异,系统版本差异)无论是web开发还是移动终端开发都必须走传统模式。
python数据挖掘工具包有啥优缺点?
【导读】python数据挖掘工具包就是scikit-learn,scikit-learn是一个基于NumPy, SciPy,
Matplotlib的开源机器学习工具包,主要涵盖分类,回归和聚类算法,例如SVM,
逻辑回归,朴素贝叶斯,随机森林,k-means等算法,代码和文档都非常不错,在许多Python项目中都有应用。
优点:
1、文档齐全:官方文档齐全,更新及时。
2、接口易用:针对所有算法提供了一致的接口调用规则,不管是KNN、K-Means还是PCA.
3、算法全面:涵盖主流机器学习任务的算法,包括回归算法、分类算法、聚类分析、数据降维处理等。
缺点:
缺点是scikit-learn不支持分布式计算,不适合用来处理超大型数据。
Pandas是一个强大的时间序列数据处理工具包,Pandas是基于Numpy构建的,比Numpy的使用更简单。最初开发的目的是为了分析财经数据,现在已经广泛应用在Python数据分析领域中。Pandas,最基础的数据结构是Series,用它来表达一行数据,可以理解为一维的数组。另一个关键的数据结构为DataFrame,它表示的是二维数组
Pandas是基于NumPy和Matplotlib开发的,主要用于数据分析和数据可视化,它的数据结构DataFrame和R语言里的data.frame很像,特别是对于时间序列数据有自己的一套分析机制。有一本书《Python
for Data Analysis》,作者是Pandas的主力开发,依次介绍了iPython, NumPy,
Pandas里的相关功能,数据可视化,数据清洗和加工,时间数据处理等,案例包括金融股票数据挖掘等,相当不错。
Mlpy是基于NumPy/SciPy的Python机器学习模块,它是Cython的扩展应用。
关于python数据挖掘工具包的优缺点,就给大家介绍到这里了,scikit-learn提供了一致的调用接口。它基于Numpy和scipy等Python数值计算库,提供了高效的算法实现,所以想要学习python,以上的内容得学会。
参考技术A python数据挖掘工具包就是scikit-learn,scikit-learn是一个基于NumPy, SciPy, Matplotlib的开源机器学习工具包,主要涵盖分类,回归和聚类算法,在许多Python项目中都有应用。优点:文档齐全、接口易用、算法全面。
缺点:是scikit-learn不支持分布式计算,不适合用来处理超大型数据。
现在建议您考一个很权威,含金量很高的证书,那就是CDA数据分析师。CDA证书是新兴的高质量证书,最近2年发展比较快,不少公司都在关注这个认证考试,得益于国内人大论坛,现在叫经管之家的推广贡献。
想要了解更多有关数据挖掘的信息,可以了解一下CDA数据分析师的课程。“CDA数据分析师认证”是一套专业化,科学化,国际化,系统化的人才考核标准,分为CDA LEVELⅠ ,LEVEL Ⅱ,LEVEL Ⅲ,涉及金融、电商、医疗、互联网、电信等行业大数据及数据分析从业者所需要具备的技能,符合当今全球大数据及数据分析技术潮流,为各界企业、机构提供数据分析人才参照标准。点击预约免费试听课。
以上是关于“Python”有啥缺点?的主要内容,如果未能解决你的问题,请参考以下文章