Sobel & 各向同性Sobel(Isotropic Sobel)算子

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Sobel & 各向同性Sobel(Isotropic Sobel)算子相关的知识,希望对你有一定的参考价值。

参考技术A

Sobel算子:
Sobel算子是像素图像边缘检测中最重要的算子之一,在机器学习、数字媒体、计算机视觉等信息科技领域起着举足轻重的作用。在技术上,它是一个离散的一阶差分算子,用来计算图像亮度函数的一阶梯度之近似值。在图像的任何一点使用此算子,将会产生该点对应的梯度矢量或是其法矢量。
核心公式:
该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像,Gx及Gy分别代表经横向及纵向边缘检测的图像,其公式如下:

Sobel 算子有两个:

与Prewitt算子相比,Sobel算子对于像素的位置的影响做了加权,可以降低边缘模糊程度,因此效果更好。

Sobel算子另一种形式是 各向同性Sobel(Isotropic Sobel)算子 ,也有两个,

构成: 将Sobel算子矩阵中的所有2改为根号2,就能得到各向同性Sobel的矩阵。

由于Sobel算子是滤波算子的形式,用于提取边缘,可以利用快速卷积函数, 简单有效,因此应用广泛。

Sobel算子并没有将图像的主体与背景严格地区分开来,换言之就是Sobel算子没有基于图像灰度进行处理,由于Sobel算子没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。

阈值化轮廓提取算法
在观测一幅图像的时候,我们往往首先注意的是图像与背景不同的部分,正是这个部分将主体突出显示,基于该理论,有 阈值化轮廓提取算法 ,该算法已在数学上证明当像素点满足正态分布时所求解是最优的。

Sobel算子的算子描述

参考技术A

在边缘检测中,常用的一种模板是Sobel 算子。Sobel 算子有两个,一个是检测水平边缘的 ;另一个是检测垂直边缘的 。与Prewitt算子相比,Sobel算子对于象素的位置的影响做了加权,可以降低边缘模糊程度,因此效果更好。
Sobel算子另一种形式是各向同性Sobel(Isotropic Sobel)算子,也有两个,一个是检测水平边缘的 ,另一个是检测垂直边缘的 。各向同性Sobel算子和普通Sobel算子相比,它的位置加权系数更为准确,在检测不同方向的边沿时梯度的幅度一致。将Sobel算子矩阵中的所有2改为根号2,就能得到各向同性Sobel的矩阵。
由于Sobel算子是滤波算子的形式,用于提取边缘,可以利用快速卷积函数, 简单有效,因此应用广泛。美中不足的是,Sobel算子并没有将图像的主体与背景严格地区分开来,换言之就是Sobel算子没有基于图像灰度进行处理,由于Sobel算子没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。 在观测一幅图像的时候,我们往往首先注意的是图像与背景不同的部分,正是这个部分将主体突出显示,基于该理论,我们给出了下面阈值化轮廓提取算法,该算法已在数学上证明当像素点满足正态分布时所求解是最优的。

以上是关于Sobel & 各向同性Sobel(Isotropic Sobel)算子的主要内容,如果未能解决你的问题,请参考以下文章

Opencv 2.1 Sobel检测器通过错误

Sobel算子取代:基于特定点方向的canny边缘检测

sobel算子里的阈值是怎么设的

sobel 算子和 canndy 算子的区别

OpenCV 边缘检测之Sobel算子

OpenCV中不用库函数实现sobel算子