c#线程之前台线程后台线程及使用

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了c#线程之前台线程后台线程及使用相关的知识,希望对你有一定的参考价值。

参考技术A 一、关于前台线程和后台线程

1、简介

CLR中线程分为两种类型,一种是前台线程、另一种是后台线程.

前台线程:应用程序的主线程、Thread构造的线程都默认为前台线程

后台线程:线程池线程都为后台线程

2、区别

2.1 前台线程:前台线程一般执行重要性很高的任务,至于什么是重要性很高,这个需要结合业务综合考虑,哪些操作是当前应用程序必须执行的。

如下控制台程序:

控制台等待DoWork方法执行完成之后关闭。

2.2 后台线程:这里需要注意,当一个进程的所有前台线程关闭时,也就是当应用程序推出的时候,无论后台线程有没有执行完它的任务,它都会被强制关闭.但是,当应用程序开启时,它又会重新启动.后台线程一般执行不重要、耗时很短的任务,就算进程(应用程序)关闭了,导致它强制关闭,也不会造成影响的任务.比如系统清理程序等。

如下控制台程序:

控制台不等子线程处理完成,直接关闭。

注意:一般进程会在所有的前台线程执行完毕时关闭。

二、使用Thread构建异步操作(受限制)

1、Thread简介和使用场景

关于使用Thread类构建线程执行异步操作有以下几点需要注意的:

(1)、Thread本身微软并不建议使用,应为它其中的很多Api并不靠谱(如Start、Join、IsBackground等)

(2)、由于(1)的问题,所以微软将整个Thread类都不开放给Windows Store应用

虽然Thread有很多不好的缺点,但是它还是有它的用武之处,只要满足以下条件:

(1)、如果执行的代码处于一种特定的状态,这种状态对于线程池来说时非同寻常的。

(2)、线程需要以非普通优先级运行.所有线程池线程都以普通优先级运行,虽然可以修改,但是在不同线程池之间,这种优先级无法持续。

(3)、需要线程变现为一个前台线程(什么是前台线程,上面有解释),防止应用程序在线程结束前就关闭了.这个后台线程无法做到(也就是线程池线程)

(4)、线程需要执行长时间的计算任务。

(5)、线程可能存在终止的情况,程序池线程不存在这种情况(它会一直执行).Thread类的Abort方法。

三、CLR线程池

1、进程和CLR的关系
一个进程可以只包含一个CLR,也可以包含多个CLR
2、CLR和AppDomain的关系
一个CLR可以包含多个AppDomain
3、CLR和线程池的关系
一个CLR只包含一个线程池
所以得出一个CLR下的多个AppDomain共享一个线程池和一个进程下的多个CLR拥有多个线程池的结论.注:多个线程池间的线程池相互不产生影响。

4、CLR和线程池和操作请求队列的关系
(1)、CLR第一次初始化时,线程池并没有线程,当应用程序调用异步代码执行一个方法时,会将该请求记录项加入到操作请求队列中,线程池的代码从这个队列中获取记录项,并派发给线程池线程,接着
线程池会创建线程,当然这里会有性能开销,但是当该线程执行完毕之后,线程池会回收这个线程,这里注意:线程池不会直接销毁这个线程,而是让它处于闲置状态.这样就不会产生额外的性能开销。
但是如果该线程如果长时间处于闲置状态,那么线程池会销毁它,关于这个时间的计算很复杂,各个CLR对它的定义各不相同。
(2)、当应用程序向线程池发起了多个请求,线程池会尝试用一个线程来处理你所有的请求,但是如果这个线程处理压力过大,那么它会开启一个新的线程来给它分担压力.以此类推。
(3)、线程池之包含了少量线程,因为如果线程太多,会增加性能开销,当然如果你升级了你电脑的cpu,线程池则会创建更多的线程.这个过程线程池会自动的去读取你得cpu核数信息,自动的去分配合适的线程数
合理地分配CPU资源.当应用程序的压力减轻,那么它会销毁不用的线程。

C#多线程编程(转)

一、使用线程的理由

1、可以使用线程将代码同其他代码隔离,提高应用程序的可靠性。

2、可以使用线程来简化编码。

3、可以使用线程来实现并发执行。

二、基本知识

1、进程与线程:进程作为操作系统执行程序的基本单位,拥有应用程序的资源,进程包含线程,进程的资源被线程共享,线程不拥有资源。

2、前台线程和后台线程:通过Thread类新建线程默认为前台线程。当所有前台线程关闭时,所有的后台线程也会被直接终止,不会抛出异常。

3、挂起(Suspend)和唤醒(Resume):由于线程的执行顺序和程序的执行情况不可预知,所以使用挂起和唤醒容易发生死锁的情况,在实际应用中应该尽量少用。

4、阻塞线程:Join,阻塞调用线程,直到该线程终止。

5、终止线程:Abort:抛出 ThreadAbortException 异常让线程终止,终止后的线程不可唤醒。Interrupt:抛出 ThreadInterruptException 异常让线程终止,通过捕获异常可以继续执行。

6、线程优先级:AboveNormal BelowNormal Highest Lowest Normal,默认为Normal。

三、线程的使用

线程函数通过委托传递,可以不带参数,也可以带参数(只能有一个参数),可以用一个类或结构体封装参数。

复制代码
namespace Test
{
    class Program
    {
        static void Main(string[] args)
        {
            Thread t1 = new Thread(new ThreadStart(TestMethod));
            Thread t2 = new Thread(new ParameterizedThreadStart(TestMethod));
            t1.IsBackground = true;
            t2.IsBackground = true;
            t1.Start();
            t2.Start("hello");
            Console.ReadKey();
        }

        public static void TestMethod()
        {
            Console.WriteLine("不带参数的线程函数");
        }

        public static void TestMethod(object data)
        {
            string datastr = data as string;
            Console.WriteLine("带参数的线程函数,参数为:{0}", datastr);
        }
    } 
}
复制代码

四、线程池

由于线程的创建和销毁需要耗费一定的开销,过多的使用线程会造成内存资源的浪费,出于对性能的考虑,于是引入了线程池的概念。线程池维护一个请求队 列,线程池的代码从队列提取任务,然后委派给线程池的一个线程执行,线程执行完不会被立即销毁,这样既可以在后台执行任务,又可以减少线程创建和销毁所带 来的开销。

线程池线程默认为后台线程(IsBackground)。

复制代码
namespace Test
{
    class Program
    {
        static void Main(string[] args)
        {
            //将工作项加入到线程池队列中,这里可以传递一个线程参数
            ThreadPool.QueueUserWorkItem(TestMethod, "Hello");
            Console.ReadKey();
        }

        public static void TestMethod(object data)
        {
            string datastr = data as string;
            Console.WriteLine(datastr);
        }
    }
}
复制代码

五、Task类

使用ThreadPool的QueueUserWorkItem()方法发起一次异步的线程执行很简单,但是该方法最大的问题是没有一个内建的机制 让你知道操作什么时候完成,有没有一个内建的机制在操作完成后获得一个返回值。为此,可以使用System.Threading.Tasks中的Task 类。

构造一个Task<TResult>对象,并为泛型TResult参数传递一个操作的返回类型。

复制代码
namespace Test
{
    class Program
    {
        static void Main(string[] args)
        {
            Task<Int32> t = new Task<Int32>(n => Sum((Int32)n), 1000);
            t.Start();
            t.Wait();
            Console.WriteLine(t.Result);
            Console.ReadKey();
        }

        private static Int32 Sum(Int32 n)
        {
            Int32 sum = 0;
            for (; n > 0; --n)
                checked{ sum += n;} //结果太大,抛出异常
            return sum;
        }
    }
}
复制代码

一个任务完成时,自动启动一个新任务。
一个任务完成后,它可以启动另一个任务,下面重写了前面的代码,不阻塞任何线程。

复制代码
namespace Test
{
    class Program
    {
        static void Main(string[] args)
        {
            Task<Int32> t = new Task<Int32>(n => Sum((Int32)n), 1000);
            t.Start();
            //t.Wait();
            Task cwt = t.ContinueWith(task => Console.WriteLine("The result is {0}",t.Result));
            Console.ReadKey();
        }

        private static Int32 Sum(Int32 n)
        {
            Int32 sum = 0;
            for (; n > 0; --n)
                checked{ sum += n;} //结果溢出,抛出异常
            return sum;
        }
    }
}
复制代码

六、委托异步执行

委托的异步调用:BeginInvoke() 和 EndInvoke()

复制代码
namespace Test
{
    public delegate string MyDelegate(object data);
    class Program
    {
        static void Main(string[] args)
        {
            MyDelegate mydelegate = new MyDelegate(TestMethod);
            IAsyncResult result = mydelegate.BeginInvoke("Thread Param", TestCallback, "Callback Param");

            //异步执行完成
            string resultstr = mydelegate.EndInvoke(result);
        }

        //线程函数
        public static string TestMethod(object data)
        {
            string datastr = data as string;
            return datastr;
        }

        //异步回调函数
        public static void TestCallback(IAsyncResult data)
        {
            Console.WriteLine(data.AsyncState);
        }
    }
}
复制代码

七、线程同步

  1)原子操作(Interlocked):所有方法都是执行一次原子读取或一次写入操作。

  2)lock()语句:避免锁定public类型,否则实例将超出代码控制的范围,定义private对象来锁定。

  3)Monitor实现线程同步

    通过Monitor.Enter() 和 Monitor.Exit()实现排它锁的获取和释放,获取之后独占资源,不允许其他线程访问。

    还有一个TryEnter方法,请求不到资源时不会阻塞等待,可以设置超时时间,获取不到直接返回false。

  4)ReaderWriterLock

    当对资源操作读多写少的时候,为了提高资源的利用率,让读操作锁为共享锁,多个线程可以并发读取资源,而写操作为独占锁,只允许一个线程操作。

  5)事件(Event)类实现同步

    事件类有两种状态,终止状态和非终止状态,终止状态时调用WaitOne可以请求成功,通过Set将时间状态设置为终止状态。

    1)AutoResetEvent(自动重置事件)

    2)ManualResetEvent(手动重置事件)

  6)信号量(Semaphore)

      信号量是由内核对象维护的int变量,为0时,线程阻塞,大于0时解除阻塞,当一个信号量上的等待线程解除阻塞后,信号量计数+1。

      线程通过WaitOne将信号量减1,通过Release将信号量加1,使用很简单。

  7)互斥体(Mutex)

      独占资源,用法与Semaphore相似。

   8)跨进程间的同步

      通过设置同步对象的名称就可以实现系统级的同步,不同应用程序通过同步对象的名称识别不同同步对象。

 

以上是关于c#线程之前台线程后台线程及使用的主要内容,如果未能解决你的问题,请参考以下文章

前台线程与后台线程之分

C#多线程编程

C#多线程编程

C#多线程编程

C#多线程编程

C#多线程编程(转)