大数据怎么应用,大数据是啥

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据怎么应用,大数据是啥相关的知识,希望对你有一定的参考价值。

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。[1]
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》[2] 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)、Veracity(真实性)。
未至科技数据中心解决方案是以组织价值链分析模型为理论指导,结合组织战略规划和面向对象的方法论,对组织信息化战略进行规划重造立足数据,以数据为基础建立组织信息化标准,提供面向数据采集、处理、挖掘、分析、服务为组织提供一整套的基础解决方案。未至数据中心解决方案采用了当前先进的大数据技术,基于Hadoop架构,利用HDFS、Hive、Impala等大数据技术架构组件和公司自有ETL工具等中间件产品,建立了组织内部高性能、高效率的信息资源大数据服务平台,实现组织内数亿条以上数据的秒级实时查询、更新、调用、分析等信息资源服务。未至数据中心解决方案将,为公安、教育、旅游、住建等各行业业务数据中心、城市公共基础数据库平台、行业部门信息资源基础数据库建设和数据资源规划、管理等业务提供了一体化的解决方案。
参考技术A 大数据:
大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
根据维基百科的定义,大数据是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。[1]
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《著云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
意义:
有人把数据比喻为蕴[4] 藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。
大数据的价值体现在以下几个方面:
1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;
2) 做小而美模式的中长尾企业可以利用大数据做服务转型;
3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
参考技术B 大数据是互联网发展的方向,大数据人才是未来的高薪贵族。随着大数据人才的供不应求,大数据人才的薪资待遇也在不断提升。大数据时代,中国IT环境也将面临重新洗牌,不仅仅是企业,更是程序员们转型可遇而不可求的机遇。综合以下是10家专门从事大数据构建或相关业务的企业所提供的应用程序,有需要的可以直接收藏了!
1. Domo
Omniture公司前首席执行官Josh James于2010年创立了Domo公司,为企业提供了一种方法,可以从不同来源、不同的孤岛中查看数据。它自动从电子表格、社交媒体、内部存储、数据库,基于云的应用程序,以及数据仓库中提取数据,并在可定制仪表板上显示信息。它以其易用性以及几乎任何人都可以建立和使用它而闻名,而不仅仅是数据科学家采用。它配备了许多预加载的图表和数据源设计,可以快速移动。
2. Teradata Database
从Teradata Database 15开始,该公司增加了Teradata统一数据架构等新的大数据功能,使企业能够跨多个系统访问和处理分析查询,其中包括从Hadoop导入和导出双向数据。它还添加了地理空间数据的3D显示和处理,以及增强的工作负载管理和系统可用性。支持AWS和Azure的基于云计算的版本称为Teradata Everywhere,它在基于公共云的数据和本地部署的数据之间提供了大规模的并行处理分析。
3. Hitachi Vantara
Hitachi Vantara的大数据产品是建立一些流行的开源工具基础上。Hitachi Vantara成立于2017年,是日立数据系统公司的存储和数据中心基础设施业务部门,是由Hitachi Insight集团物联网业务和日立Pentaho大数据业务组合成的一家合资公司。 Pentaho基于Apache Spark内存计算框架和Apache Kafka消息系统。Pentaho 8.0还增加了对Apache Knox Gateway的支持,以对用户进行身份验证,并强制访问大数据存储库的访问规则。它还增加了对依靠Docker容器构建分析应用程序的支持。
4. TIBCO公司的Statistica
TIBCO公司的Statistica是针对各种规模企业的预测分析软件,使用Hadoop技术对结构化和非结构化数据执行数据挖掘,解决物联网数据,能够在全球任何地方的设备和网关上部署分析,并支持数据库内分析来自Apache Hive、mysql、Oracle、Teradata等平台的功能。它使用模板来设计完整的分析,因此只有较少的技术用户可以进行自己的分析,并且可以将模型从电脑导出到其他设备。
5. Panoply
Panoply公司依靠使用人工智能来销售所谓的智能云数据仓库,以消除转换、集成和管理数据所需的开发和编码。该公司声称,其智能云数据仓库实质上提供了数据管理即服务,能够在无需任何干预的情况下消费和处理高达1PB的数据。其机器学习算法可以检查来自任何数据源的数据,并对该数据执行查询和可视化。
6. IBM Watson Analytics
Watson Analytics是IBM公司的基于云计算的分析服务。当用户将数据上传到Watson时,它会根据数据分析向用户提供可帮助回答的问题,并立即提供关键数据可视化。它还可以进行简单分析、预测分析、智能数据发现,并提供各种自助服务仪表板。IBM公司还有另一种分析产品SPSS,可用于从数据中发现模式,并查找数据点之间的关联。
7. SAS Visual Analytics
Statistical Analysis System (SAS)创建于1976年,比大数据的创建还要早,就是为了处理大量数据。它可以从各种来源中挖掘、更改、管理和检索数据,并对所述数据执行统计分析,然后将其呈现在一系列方法中,如统计数据、图表等,或将数据写入其他文件。它支持所有类型的数据预测和分析要点,并附带预测工具来分析和预测流程。
8. Sisense商业智能软件
Sisense公司声称其提供了唯一的商业智能软件,使用户可以依靠从商品服务器硬件上的多个源进行来准备、分析和可视化复杂数据。Sisense的片上高性能数据引擎可以在一秒钟内完成对TB级数据的查询,并且为不同行业提供了一批模板。
9. Talend的大数据工作室
Talend一直专注于为Hadoop生成干净的原生代码,无需手动编写所有代码。它为各种大数据存储库提供接口,如Cloudera,MapR,Hortonworks和Amazon EMR。它近期添加了一个数据准备应用程序,可以让客户创建一个通用字典,并使用机器学习,自动执行数据清理过程,以便在更短的时间内为数据处理准备好数据。
10. Cloudera
Apache Hadoop公司是很受欢迎的提供商和支持者,它与戴尔、英特尔、甲骨文、SAS、德勤和凯捷等公司都有合作关系。它由五个主要应用程序组成:核心数据管理平台Cloudera Essentials,数据管理平台Cloudera Enterprise Data Hub,用于商业智能和基于SQL的分析的Cloudera Analytic DB; 高度可扩展的NoSQL数据库Cloudera Operational DB,以及Cloudera Data Science and Engineering,在Core Essentials平台上运行的数据处理、数据科学和机器学习。
参考技术C 大数据:
大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
根据维基百科的定义,大数据是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。[1]
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《著云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
意义:
有人把数据比喻为蕴[4] 藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。
大数据的价值体现在以下几个方面:
1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;
2) 做小而美模式的中长尾企业可以利用大数据做服务转型;
3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。

大数据是啥,可以吃的吗?

作者|影姿

关于大数据是什么,从一开始仅仅只想做数据,到开始意识到自己做的是对整个集团有核心意义的数据产品,再到走到外面,把数据能力对外输出,所有过程中,不断的有客户问到这个问题,有懵懂的、有善意的、也有挑衅的、不屑的。就像大数据本身一样,混乱又带有迷幻色彩。

现在对大数据的理解有两种极端:站在大数据的风口,很多人觉得大数据是未来,可以解决所有问题,包括人工智能;我自己不用想,大数据已经替我想好决定好一切了;还有一种,是大数据的概念炒了好几年,冷饭都抄成锅巴了,但是尝试过人的只收集齐了几万点伤害,觉得大数据不过如此

大数据并不一定要数据达到了多少体量才能算是大数据,但是如果数据简单量少到只需要用xlsx、SPSS等传统数据处理就能解决,就不需要再用大数据技术,有点杀鸡用牛刀的感觉。但大数据应用一定并不仅仅指分析,跳出传统数据分析的范畴,大数据应用领域可以指导使用在我们所有的生活工作业务、场景领域,例如个性化推荐、精准营销、风险监控等。

这几年多多少少沉淀下来的经验,和老板时谦虚时叫板时被骂总结到的体会,加上偶尔抽筋想增加修养磕磕绊绊看的书,有几点关于大数据的基本特征可以和大家探讨:

一、非竞争性

现在很多企业,对数据的保护是非常严格的,大家都觉得自己的数据很有价值,不能随便给别人使用。曾经有一度,我在做数据联盟的时候(这个可以以后另开一篇文章讲),每次和客户聊,都想传达一个概念,数据如果是一种资源,那也是可以被众多消耗方同时使用和反复使用的资源,个体的使用不会妨碍他人的使用。数据只有越被使用才能积累数据的应用价值(当然裸数据直接售卖的方式不在我所讨论的大数据应用范畴)。

二、价值无定值

延续上面说的,裸数据直接售卖,在我们积累了大量的数据应用实践经验之后再回过头来看,是觉得非常可笑的,所有想对某个数据字段定价,然后公开买卖的,都是短时和自绝的行为(个人观点,不要动砖头)。数据就像是无形资产一样,市场估值取决于买者对该项数据的需要程度,合适的数据服务应用于某个客户产品,产生的作用千差万别,硬要给某个数据定一个价,只能让数据贬值或让高买者对大数据产生不信任。但是并不是说数据是无价的,数据一定要有一个价值,然后让它流动应用起来,不断调整迭代到合适的附加值,聪明的数据应用者会最大程度利用具有真正附加值的应用模式创造财富。

三、会问问题

没有能够自动从大数据中获取经济价值的方式,没有捷径和想当然,我反对所有说只要有大数据就什么也不需要干了的说法。企业单纯的存储数据没有什么用处,而存储什么,清除什么,业内可以选择的高端技术都已经准备好静待选择。现在对于一家企业来说:前瞻性的深入理解哪些数据值得首先存储和处理,是第一要务。

大数据只提供答案,但它对该问的问题保持缄默,这些问题来自负责人的智慧,提出怎样的问题视关键!就像柏拉图说的那样:最终获胜的将是那些“知道如何提出问题的人”,只有那些知道怎么样提出问题的人才知道,哪些数据可能会回答问题,如何用这些数据回答问题。

大数据行业里最缺乏或者将来身价最高的人,就是既理解业务,又了解数据,知道怎么提出业务的问题,也知道怎么用大数据解答问题的大数据专家(打个广告:欢迎来数澜应聘产品经理提升身价)

大数据技术提供了高端快速的尖端技术,使得大数据处理技术能够日行千里。但是如果不选择正确有效的方向,反而累加为错误支付的成本。在大数据时代,一个正确的方向,正确的提问,正确的思路,比高精尖的科学技术、海量实时的模型算法更重要。

四、数据要有活性

长话短说,数据有保质期,需要不断更新,没有任何数据是一尘不变的,数据如果不更新,就像死水一样,所以如果有数据,就要赶紧用起来,存着又不知道该怎么用,存久了价值就指数下降了。

五、不直接售卖

也许大家觉得直接售卖现在也形成产业链了,看起来也是一种新模式了,我只想说说直接售卖的弊端:

(1)数据本身没有确切的定价,过早定价会降低溢价空间;

(2)售卖的方式无法形成技术壁垒(今天讨论的是大数据商业应用领域,科学研究是另一个话题),购买的数据可以再次低价售卖,形成恶性循环做低数据价值;

(3)数据安全问题,个体数据无法通过直接售卖的方式进行应用,但个体数据是非常值得研究和应用的数据内容,需要寻找一种安全脱敏合法的方式,将大数据反哺便利用户日常生活。

六、相关性而非因果性

中国人传统的理念讲因果,因此“大数据在乎相关性而非因果性”这个观念从国外传来时还是很颠覆的,不过大数据因为其强大的“广泛数据都可计算”特性,使得不需要再探究因果,根据现有充足海量的数据就可以做出分析或预测。但是关于这个特征是不是还要再颠覆一次,搞清楚因果,我还在实践中,也欢迎有体会的朋友们抛砖。

【文章来自一个爱吃的数据人沿途随笔】

以上是关于大数据怎么应用,大数据是啥的主要内容,如果未能解决你的问题,请参考以下文章

大数据中的java是啥?

大数据可视化技术是啥?做大数据开发要会吗?

大数据系统体系建设规划包括哪些内容是啥

大数据是啥?

大数据的内容是啥

大数据Kafka是啥呢?