ElasticSearch 聚合分析的原理 & 精准度的问题

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ElasticSearch 聚合分析的原理 & 精准度的问题相关的知识,希望对你有一定的参考价值。

参考技术A 通过调大 shard_size 的大小,使得 doc_count_error_upper_bound 的值降低,从而提升准确度,其原理是:增加整体计算量,提高精准度的同时会降低响应时间;

Elasticsearch系列---聚合查询原理

概要

本篇主要介绍聚合查询的内部原理,正排索引是如何建立的和优化的,fielddata的使用,最后简单介绍了聚合分析时如何选用深度优先和广度优先。

正排索引

聚合查询的内部原理是什么,Elastichsearch是用什么样的数据结构去执行聚合的?用倒排索引吗?

工作原理

我们了解到倒排索引对搜索是非常高效的,但是在排序或聚合操作方面,倒排索引就显得力不从心,例如我们举个实际案例,假设我们有两个文档:

  1. I have a friend who loves smile
  2. love me, I love you

为了建立倒排索引,我们先按最简单的用空格把每个单词分开,可以得到如下结果:
*表示该列文档中有这个词条,为空表示没有该词条

Term doc1 doc2
I * *
have *
a *
friend *
who *
loves *
smile *
love *
me *
you *

如果我们要搜索love you,我们只需要查找包含每个词条的文档:

Term doc1 doc2
love *
you *

搜索是非常高效的,倒排索引根据词条来排序,我们首先在词条列表中打到love,然后扫描所有的列,可以快速看到doc2包含这个关键词。

但聚合操作呢?我们需要找到doc2里所有唯一的词条,用倒排索引来完成,代价就非常高了,需要迭代索引的每个词条,看一下有没有doc2,有就把这个词条收录起来,没有就检查下一个词条,直到整个倒排索引全部搜索完成。很慢而且难以扩展,并且 会随着数据量的增加而增加。

聚合查询肯定不能用倒排索引了,那就用正排索引,建立的数据结构将变成这样:

Doc terms
doc1 I, have, a, friend, who, loves, smile
doc2 love, me, I, you

这样的数据结构,我们要搜索doc2包含多少个词条就非常容易了。

倒排索引+正排索引结合的优势

如果聚合查询里有带过滤条件或检索条件,先由倒排索引完成搜索,确定文档范围,再由正排索引提取field,最后做聚合计算。

这样才是最高效的

帮助理解两个索引结构

倒排索引,类似JAVA中Map的k-v结构,k是分词后的关键词,v是doc文档编号,检索关键字特别容易,但要找到aggs的value值,必须全部搜索v才能得到,性能比较低。

正排索引,也类似JAVA中Map的k-v结构,k是doc文档编号,v是doc文档内容,只要有doc编号作参数,提取相应的v即可,搜索范围小得多,性能比较高。

底层原理

基本原理
  1. 正排索引也是索引时生成(index-time),倒排索引也是index-time。
  2. 核心写入原理与倒排索引类似,同样基于不变原理设计,也写os cache,磁盘等,os cache要存放所有的doc value,存不下时放磁盘。
  3. 性能问题,jvm内存少用点,os cache搞大一些,如64G内存的机器,jvm设置为16G,os cache内存给个32G左右,os cache够大才能提升正排索引的缓存和查询效率。
column压缩

正排索引本质上是一个序列化的链表,里面的数据类型都是一致的(不一致说明索引建立不规范),压缩时可以大大减少磁盘空间、提高访问速度,如以下几种压缩技巧:

  1. 如果所有的数值各不相同(或缺失),设置一个标记并记录这些值
  2. 如果这些值小于 256,将使用一个简单的编码表
  3. 如果这些值大于 256,检测是否存在一个最大公约数
  4. 如果没有存在最大公约数,从最小的数值开始,统一计算偏移量进行编码

例如:
doc1: 550
doc2: 600
doc3: 500

最大公约数50,压缩后的结果可能是这样:
doc1: 11
doc2: 12
doc3: 10

同时最大公约数50也会保存起来。

禁用正排索引

正排索引默认对所有字段启用,除了analyzed text。也就是说所有的数字、地理坐标、日期和不分析(not_analyzed)字符类型都会默认开启。针对某些字段,可以不存正排索引,减少磁盘空间占用(生产不建议使用,毕竟无法预知需求的变化),示例如下:

# 对字段sessionId取消正排索引
PUT music
{
  "mappings": {
    "_doc": {
      "properties": {
        "sessionId": {
          "type":   "keyword",
          "doc_values": false
        }
      }
    }
  }
}

同样的,我们对倒排索引也可以取消,让一个字段可以被聚合,但是不能被正常检索,示例如下:

PUT music
{
  "mappings": {
    "_doc": {
      "properties": {
        "sessionId": {
          "type":   "keyword",
          "doc_values": true,
          "index": false
        }
      }
    }
  }
}

fielddata原理

上一小节我们提到,正排索引对分词的字段是不启用的,如果我们尝试对一个分词的字段进行聚合操作,如music索引的author字段,将得到如下提示:

Fielddata is disabled on text fields by default. Set fielddata=true on [author] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead.

这段提示告诉我们,如果分词的字段要支持聚合查询,必须设置fielddata=true,然后把正排索引的数据加载到内存中,这会消耗大量的内存。

解决办法:

  1. 设置fielddata=true
  2. 使用author.keyword字段,建立mapping时有内置字段的设置。

内部原理

analyzed字符串的字段,字段分词后占用空间很大,正排索引不能很有效的表示多值字符串,所以正排索引不支持此类字段。

fielddata结构与正排索引类似,是另外一份数据,构建和管理100%在内存中,并常驻于JVM内存堆,极易引起OOM问题。

加载过程

fielddata加载到内存的过程是lazy加载的,对一个analzyed field执行聚合时,才会加载,而且是针对该索引下所有的文档进行field-level加载的,而不是匹配查询条件的文档,这对JVM是极大的考验。

fielddata是query-time创建,动态填充数据,而不是不是index-time创建,

内存限制

indices.fielddata.cache.size 控制为fielddata分配的堆空间大小。 当你发起一个查询,分析字符串的聚合将会被加载到fielddata,如果这些字符串之前没有被加载过。如果结果中fielddata大小超过了指定大小,其他的值将会被回收从而获得空间(使用LRU算法执行回收)。

默认无限制,限制内存使用,但是会导致频繁evict和reload,大量IO性能损耗,以及内存碎片和gc,这个参数是一个安全卫士,必须要设置:

indices.fielddata.cache.size: 20%

监控fielddata内存使用

Elasticsearch提供了监控监控fielddata内存使用的命令,我们在上面可以看到内存使用和替换的次数,过高的evictions值(回收替换次数)预示着内存不够用的问题和性能不佳的原因:

# 按索引使用 indices-stats API
GET /_stats/fielddata?fields=*

# 按节点使用 nodes-stats API
GET /_nodes/stats/indices/fielddata?fields=*

# 按索引节点
GET /_nodes/stats/indices/fielddata?level=indices&fields=*

fields=*表示所有的字段,也可以指定具体的字段名称。

熔断器

indices.fielddata.cache.size的作用范围是当前查询完成后,发现内存不够用了才执行回收过程,如果当前查询的数据比内存设置的fielddata 的总量还大,如果没有做控制,可能就直接OOM了。

熔断器的功能就是阻止OOM的现象发生,在执行查询时,会预算内存要求,如果超过限制,直接掐断请求,返回查询失败,这样保护Elasticsearch不出现OOM错误。

常用的配置如下:

  • indices.breaker.fielddata.limit:fielddata的内存限制,默认60%
  • indices.breaker.request.limit:执行聚合的内存限制,默认40%
  • indices.breaker.total.limit:综合上面两个,限制在70%以内

最好为熔断器设置一个相对保守点的值。fielddata需要与request断路器共享堆内存、索引缓冲内存和过滤器缓存,并且熔断器是根据总堆内存大小估算查询大小的,而不是实际堆内存的使用情况,如果堆内有太多等待回收的fielddata,也有可能会导致OOM发生。

ngram对fielddata的影响

前缀搜索一章节我们介绍了ngram,ngram会生成大量的词条,如果这个字段同时设置fielddata=true的话,那么会消耗大量的内存,这里一定要谨慎。

fielddata精细化控制

fielddata过滤

过滤的主要目的是去掉长尾数据,我们可以加一些限制条件,如下请求:

PUT /music/_mapping/children
{
  "properties": {
    "tags": {
      "type": "text",
      "fielddata": true,
      "fielddata_frequency_filter": {
        "min": 0.001,
        "max": 0.1,
        "min_segment_size": 500
      }
    }
  }
}

fielddata_frequency_filter过滤器会基于以下条件进行过滤:

  • 出现频率介绍0.1%和10%之间
  • 忽略文档个数小于500的段文件

fidelddata是按段来加载的,所以出现频率是基于某个段计算得来的,如果一个段内只有少量文档,统计词频意义不大,等段合并到大的段当中,超过500个文档这个限制,就会纳入计算。

fielddata数据对内存的占用是显而易见的,对fielddata过滤长尾是一种权衡。

序号标记预加载

假设我们的文档用来标记状态有几种字符串:

  • SUCCESS
  • FAILED
  • PENDING
  • WAIT_PAY

状态这类的字段,系统设计时肯定是可以穷举的,如果我们存储到Elasticsearch中也用的是字符串类型,需要的存储空间就会多一些,如果我们换成1,2,3,4这种Byte类型的,就可以节省很多空间。

"序号标记"做的就是这种优化,如果文档特别多(PB级别),那节省的空间就非常可观,我们可以对这类可以穷举的字段设置序号标记,如下请求:

PUT /music/_mapping/children
{
  "properties": {
    "tags": {
      "type": "text",
      "fielddata": true,
      "eager_global_ordinals": true
    }
  }
}

深度优先VS广度优先

Elasticsearch的聚合查询时,如果数据量较多且涉及多个条件聚合,会产生大量的bucket,并且需要从这些bucket中挑出符合条件的,那该怎么对这些bucket进行挑选是一个值得考虑的问题,挑选方式好,事半功倍,效率非常高,挑选方式不好,可能OOM,我们拿深度优先和广度优先这两个方式来讲解。

我们举个电影与演员的例子,一部电影由多名演员参与,我们搜索的需求:出演电影最多的10名演员以及他们合作最多的5名演员。

如果是深度优先,示例图如下:

技术图片

这种查询方式需要构建完整的数据,会消耗大量的内存。假设我们每部电影有10位演员(1主9配),有10万部电影,那么第一层的数据就有10万条,第二层为9*10万=90万条,共100万条数据。

我们对这100万条数据进行排序后,取主角出演次数最多的10个,即10条数据,裁掉99加上与主角合作最多的5名演员,共50条数据。

构建了100万条数据,最终只取50条,内存是不是有点浪费?

如果是广度优先,示例图如下:

技术图片

这种查询方式先查询电影主角,取前面10条,第一层就只有10条数据,裁掉其他不要的,然后找出跟主角有关联的配角人员,与合作最多的5名,共50条数据。

聚合查询默认是深度优先,设置广度优先只需要设置collect_mode参数为breadth_first,示例:

GET /music/children/_search
{
  "size": 0,
  "aggs": {
    "lang": {
      "terms": {
        "field": "language",
        "collect_mode" : "breadth_first" 
      },
      "aggs": {
        "length_avg": {
          "avg": {
            "field": "length"
          }
        }
      }
    }
  }
}
注意

使用深度优先还是广度优先,要考虑实际的情况,广度优先仅适用于每个组的聚合数量远远小于当前总组数的情况,比如上面的例子,我只取10位主角,但每部电影都有一位主角,聚合的10位主角组数远远小于总组数,所以是适用的。

另外一组按月统计的柱状图数据,总组数固定只有12个月,但每个月下的数据量特别大,广度优先就不适合了。

所以说,使用哪种方式要看具体的需求。

小结

本篇讲解的聚合查询原理,可以根据实际案例做一些演示,加深一下印象,多阅读一下官网文档,实际工作中这块用到的地方还是比较多的,谢谢。

专注Java高并发、分布式架构,更多技术干货分享与心得,请关注公众号:Java架构社区
可以扫左边二维码添加好友,邀请你加入Java架构社区微信群共同探讨技术
技术图片

以上是关于ElasticSearch 聚合分析的原理 & 精准度的问题的主要内容,如果未能解决你的问题,请参考以下文章

Elasticsearch系列---聚合查询原理

Elasticsearch学习之深入聚合分析五---案例实战

ELK技术栈ElasticSearch,Logstash,Kibana

跟我学Elasticsearch(7) es的嵌套聚合,下钻分析,聚合分析

ElasticSearch聚合应该怎么学

Elasticsearch聚合查询