MySQL 如何存储大数据
Posted Joker_Ye
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MySQL 如何存储大数据相关的知识,希望对你有一定的参考价值。
最近,在工作中遇到了mysql中如何存储长度较长的字段类型问题,于是花了一周多的时间抽空学习了一下,并且记录下来。
MySQL大致的逻辑存储结构在这篇文章中有介绍,做为基本概念: InnoDB 逻辑存储结构
注:文中所指的大数据指的是长度较长的数据字段,包括varchar/varbinay/text/blob。
Compact行格式
我们首先来看一下行格式为Compact是如何存储大数据的:
mysql> select version();
+-----------+
| version() |
+-----------+
| 5.1.73 |
+-----------+
1 row in set (0.01 sec)
mysql> show table status like 'row'\\G;
*************************** 1. row ***************************
Name: row
Engine: InnoDB
Version: 10
Row_format: Compact
Rows: 1
Avg_row_length: 81920
Data_length: 81920
Max_data_length: 0
Index_length: 0
Data_free: 0
Auto_increment: NULL
Create_time: 2017-01-04 21:46:02
Update_time: NULL
Check_time: NULL
Collation: latin1_swedish_ci
Checksum: NULL
Create_options:
Comment:
1 row in set (0.00 sec)
我们建立一张测试表,插入数据:
CREATE TABLE `row` (
`content` varchar(65532) NOT NULL DEFAULT ''
) ENGINE=InnoDB DEFAULT CHARSET=latin1
mysql> insert into row(content) select repeat('a',65532);
Query OK, 1 row affected (0.03 sec)
Records: 1 Duplicates: 0 Warnings: 0
我们使用 py_innodb_page_info.py 工具来查看表中的页分布:
[root@localhost mysql]# python py_innodb_page_info.py -v com/row.ibd
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0000>
page offset 00000004, page type <Uncompressed BLOB Page>
page offset 00000005, page type <Uncompressed BLOB Page>
page offset 00000006, page type <Uncompressed BLOB Page>
page offset 00000007, page type <Uncompressed BLOB Page>
Total number of page: 8:
Insert Buffer Bitmap: 1
Uncompressed BLOB Page: 4
File Space Header: 1
B-tree Node: 1
File Segment inode: 1
可以看出,第4页的 <B-tree Node>, page level <0000> 格式为数据页,存放着MySQL的行数据。 <Uncompressed BLOB Page> 可以理解为MySQL存放大数据的地方,暂且叫作外部存储页。Compact格式没有将大数据全部放在数据页中,而是将一部分数据放在了外部存储页中。那么,是全部数据在外部存储页中,还是一部分数据。假如是一部分数据,这一部分是多少呢?
我们使用 hexdump -Cv row.ibd 查看一下数据页 <B-tree Node>, page level <0000> ,也就是第4页:
3073 0000c000 8c 25 17 57 00 00 00 03 ff ff ff ff ff ff ff ff |.%.W....????????|
3074 0000c010 00 00 00 00 00 07 3a b8 45 bf 00 00 00 00 00 00 |......:?E?......|
3075 0000c020 00 00 00 00 00 02 00 02 03 a6 80 03 00 00 00 00 |.........?......|
3076 0000c030 00 7f 00 05 00 00 00 01 00 00 00 00 00 00 00 00 |................|
3077 0000c040 00 00 00 00 00 00 00 00 00 13 00 00 00 02 00 00 |................|
3078 0000c050 00 02 00 f2 00 00 00 02 00 00 00 02 00 32 01 00 |...?.........2..|
3079 0000c060 02 00 1c 69 6e 66 69 6d 75 6d 00 02 00 0b 00 00 |...infimum......|
3080 0000c070 73 75 70 72 65 6d 75 6d 14 c3 00 00 10 ff f1 00 |supremum.?...??.|
3081 0000c080 00 00 00 04 03 00 00 00 00 13 12 80 00 00 00 2d |...............-|
3082 0000c090 01 10 61 61 61 61 61 61 61 61 61 61 61 61 61 61 |..aaaaaaaaaaaaaa|
3083 0000c0a0 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 |aaaaaaaaaaaaaaaa|
3084 0000c0b0 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 |aaaaaaaaaaaaaaaa|
3085 0000c0c0 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 |aaaaaaaaaaaaaaaa|
....
....
3128 0000c370 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 |aaaaaaaaaaaaaaaa|
3129 0000c380 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 |aaaaaaaaaaaaaaaa|
3130 0000c390 61 61 00 00 00 02 00 00 00 04 00 00 00 26 00 00 |aa...........&..|
3131 0000c3a0 00 00 00 00 fc fc 00 00 00 00 00 00 00 00 00 00 |....??..........|
3132 0000c3b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
3133 0000c3c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
3134 0000c3d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
...
...
4093 0000ffc0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
4094 0000ffd0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
4095 0000ffe0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
4096 0000fff0 00 00 00 00 00 70 00 63 01 a1 6c 2b 00 07 3a b8 |.....p.c.?l+..:?|
我们可以看出,数据页中存储了一部分数据,算下来一共是768字节,然后剩余部分存储在外部存储页中。那么数据页与外部存储页、外部存储页与外部存储页是如何连接在一起的呢?
我们观察这一行:
3130 0000c390 61 61 00 00 00 02 00 00 00 04 00 00 00 26 00 00 |aa...........&..|
3131 0000c3a0 00 00 00 00 fc fc 00 00 00 00 00 00 00 00 00 00 |................|
这一行是前缀768字节的结尾。注意最后的20个字节:
- 00 00 00 02:4字节,代表外部存储页所在的space id
- 00 00 00 04:4字节,代表第一个外部页的Page no
- 00 00 00 26:4字节,值为38,指向blob页的header
- 00 00 00 00 00 00 fc fc:8字节,代表该列存在外部存储页的总长度。此处的值为64764,加上前缀768正好是65532。(注意一点,虽然表示BLOB长度的是8字节,实际只有4个字节能使用,所有对于BLOB字段,存储数据的最大长度为4GB。)
验证下第一个外部存储页的头部信息:
4097 00010000 cd c3 b6 8e 00 00 00 04 00 00 00 00 00 00 00 00 |?ö.............|
4098 00010010 00 00 00 00 00 06 b8 a2 00 0a 00 00 00 00 00 00 |......??........|
4099 00010020 00 00 00 00 00 02 00 00 3f ca 00 00 00 05 61 61 |........??....aa|
4100 00010030 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 |aaaaaaaaaaaaaaaa|
...
...
前38个字节为File Header(关于InnoDB数据页的详细结构请参见《MySQL技术内幕 InnoDB存储引擎》4.4),这个简单提一下:
- cd c3 b6 8e:4字节,该页的checksum。
- 00 00 00 04:4字节,页偏移,此页为表空间中的第5个页。
- 00 00 00 00:4字节,当前页的上一个页。此页为 <Uncompressed BLOB Page> ,所以没有上一页。
- 00 00 00 00:4字节,当前页的下一个页。此页为 <Uncompressed BLOB Page> ,所以没有下一页。
- 00 00 00 00 00 06 b8 a2:8字节,该页最后被修改的日志序列位置LSN。
- 00 0a:2字节,页类型,0x000A代表BLOB页。
- 00 00 00 00 00 00 00 00:8字节,略过。
- 00 00 00 02:页属于哪个表空间,此处指表空间的ID为2。
之后是4字节的 00 00 3f ca ,这里的值为16330,代表此BLOB页的有效数据的字节数。 00 00 00 05 代表下一个BLOB页的page number。
我们看最后一个 <Uncompressed BLOB Page> ,第8个页:
7169 0001c000 fa 78 9b 27 00 00 00 07 00 00 00 00 00 00 00 00 |?x.'............|
7170 0001c010 00 00 00 00 00 07 3a b8 00 0a 00 00 00 00 00 00 |......:?........|
7171 0001c020 00 00 00 00 00 02 00 00 3d 9e ff ff ff ff 61 61 |........=.????aa|
7172 0001c030 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 |aaaaaaaaaaaaaaaa|
7173 0001c040 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 |aaaaaaaaaaaaaaaa|
...
...
最后一页的有效数据大小为0x00003d9e=15774,768+16330*3+15774 = 65532字节,符合初始插入数据的大小。
由于这是最后一个 <Uncompressed BLOB Page> ,所以指向下一个 <Uncompressed BLOB Page> 的指针为ff ff ff ff。
由此我们可以很清晰的看出数据页与BLOB页的连接关系(引用淘宝数据库月报上的一张图):
我们来再看一个比较有意思的例子。:
CREATE TABLE `testblob` (
`blob1` blob NOT NULL,
`blob2` blob NOT NULL,
`blob3` blob NOT NULL,
`blob4` blob NOT NULL,
`blob5` blob NOT NULL,
`blob6` blob NOT NULL,
`blob7` blob NOT NULL,
`blob8` blob NOT NULL,
`blob9` blob NOT NULL,
`blob10` blob NOT NULL,
`blob11` blob NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
mysql> insert into testblob select repeat('a',1000),repeat('b',1000),repeat('c',1000),repeat('d',1000),repeat('e',1000),repeat('f',1000),repeat('g',1000),repeat('h',1000),repeat('i',1000),repeat('j',1000),repeat('k',1000);
ERROR 1030 (HY000): Got error 139 from storage engine
我们建立一张新表,有11个blob字段。然后向每个字段插入1000字节的数据,MySQL会提示 ERROR 1030 (HY000): Got error 139 from storage engine ,什么意思呢?
InnoDB是以B+树来组织数据的,假如每一行数据都占据一整个Page页,那么B+树将退化为单链表,所以InnoDB规定了一个Page必须包含两行数据。也就是一行数据存储在Page上的大小大概为8000字节。
而上面的例子,一行数据有11个1000字节的数据,Page层肯定放不下,所以在Page层留下768*11=8448字节,已经超过了8000字节,所以MySQL会提示 ERROR 1030 (HY000): Got error 139 from storage engine 。我们很轻松的定义一个字段,来存储11000个字节,但是却无法将他们分成11个字段来存储,有点意思!
那么如何解决上面的问题呢?
- 将行格式转为接下来要说的Dynamic格式。此种格式只用20字节指向外部存储空间。
- 将多个blob字段转为一个blob字段。多个字段可以用数组存储,然后json_encode打包进blob。
我们向表中插入一条有效记录:
mysql> insert into testblob(blob1,blob2,blob3,blob4,blob5,blob6,blob7,blob8,blob9) select repeat('a',8000),repeat('b',8000),repeat('c',8000),repeat('d',8000),repeat('e',8000),repeat('f',8000),repeat('g',8000),repeat('h',8000),repeat('i',8000);
Query OK, 1 row affected (0.12 sec)
Records: 1 Duplicates: 0 Warnings: 0
[root@localhost mysql]# python py_innodb_page_info.py -v com/testblob.ibd
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0000>
page offset 00000004, page type <Uncompressed BLOB Page>
page offset 00000005, page type <Uncompressed BLOB Page>
page offset 00000006, page type <Uncompressed BLOB Page>
page offset 00000007, page type <Uncompressed BLOB Page>
page offset 00000008, page type <Uncompressed BLOB Page>
page offset 00000009, page type <Uncompressed BLOB Page>
page offset 0000000a, page type <Uncompressed BLOB Page>
page offset 0000000b, page type <Uncompressed BLOB Page>
page offset 0000000c, page type <Uncompressed BLOB Page>
Total number of page: 13:
Insert Buffer Bitmap: 1
Uncompressed BLOB Page: 9
File Space Header: 1
B-tree Node: 1
File Segment inode: 1
我们可以看出这一行数据有9个外部存储页,而我们一共就插入了9列数据,是不是当每一列的数据在page页放不下,都单独申请一个外部存储页,而互相之前不共享外部存储页。我们看一下page页的结构就知道了:
3130 0000c390 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 |aaaaaaaaaaaaaaaa|
3131 0000c3a0 61 61 61 61 00 00 00 05 00 00 00 04 00 00 00 26 |aaaa...........&|
...
...
3180 0000c6b0 62 62 62 62 62 62 62 62 00 00 00 05 00 00 00 05 |bbbbbbbb........|
3181 0000c6c0 00 00 00 26 00 00 00 00 00 00 1c 40 63 63 63 63 |...&.......@cccc|
...
...
3229 0000c9c0 63 63 63 63 63 63 63 63 63 63 63 63 00 00 00 05 |cccccccccccc....|
3230 0000c9d0 00 00 00 06 00 00 00 26 00 00 00 00 00 00 1c 40 |.......&.......@|
...
...
根据前面的分析,我们现在可以看出,外部存储页是不共享的,即使一个列的数据多出一个字节,这一个字节也是独占一个16KB空间的大小,这很浪费存储空间。(当然,这对现代计算机可能不是问题,呵呵)。
说了这么多,总结下Compact格式存储大数据的缺点:
- 由于存在768字节的前缀在Page页,所以会存在能定义一个字段,存储11000字节,但是不能定义11个字段,每个字段存储1000字节的"bug"。
- 外部存储页不共享,即使多余一个字节也是独享16KB的页面。
Dynamic行格式
接着我们首先看一下行格式为Dynamic是如何存储大数据的:
mysql> select version();
+-----------+
| version() |
+-----------+
| 5.7.14 |
+-----------+
1 row in set (0.00 sec)
mysql> show table status like 'row'\\G;
*************************** 1. row ***************************
Name: row
Engine: InnoDB
Version: 10
Row_format: Dynamic
Rows: 0
Avg_row_length: 0
Data_length: 16384
Max_data_length: 0
Index_length: 0
Data_free: 0
Auto_increment: NULL
Create_time: 2017-01-03 22:45:16
Update_time: NULL
Check_time: NULL
Collation: latin1_swedish_ci
Checksum: NULL
Create_options:
Comment:
1 row in set (0.00 sec)
创建和compact格式一样的表:
CREATE TABLE `row` (
`content` varchar(65532) NOT NULL DEFAULT ''
) ENGINE=InnoDB DEFAULT CHARSET=latin1
insert into row(content) select repeat('a',65532);
Query OK, 1 row affected (0.03 sec)
Records: 1 Duplicates: 0 Warnings: 0
看下页分布:
[root@localhost mysql]# python py_innodb_page_info.py -v row.ibd
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0000>
page offset 00000004, page type <Uncompressed BLOB Page>
page offset 00000005, page type <Uncompressed BLOB Page>
page offset 00000006, page type <Uncompressed BLOB Page>
page offset 00000007, page type <Uncompressed BLOB Page>
page offset 00000008, page type <Uncompressed BLOB Page>
Total number of page: 9:
Insert Buffer Bitmap: 1
Uncompressed BLOB Page: 5
File Space Header: 1
B-tree Node: 1
File Segment inode: 1
第4页是数据页,第5-9页是二进制页。我们直接看磁盘中第4页的数据:
3073 0000c000 dc 2d b0 f5 00 00 00 03 ff ff ff ff ff ff ff ff |.-..............|
3074 0000c010 00 00 00 00 00 a3 4b 59 45 bf 00 00 00 00 00 00 |......KYE.......|
3075 0000c020 00 00 00 00 00 36 00 02 00 a6 80 03 00 00 00 00 |.....6..........|
3076 0000c030 00 7f 00 05 00 00 00 01 00 00 00 00 00 00 00 00 |................|
3077 0000c040 00 00 00 00 00 00 00 00 00 64 00 00 00 36 00 00 |.........d...6..|
3078 0000c050 00 02 00 f2 00 00 00 36 00 00 00 02 00 32 01 00 |.......6.....2..|
3079 0000c060 02 00 1c 69 6e 66 69 6d 75 6d 00 02 00 0b 00 00 |...infimum......|
3080 0000c070 73 75 70 72 65 6d 75 6d 14 c0 00 00 10 ff f1 00 |supremum........|
3081 0000c080 00 00 00 02 00 00 00 00 00 07 07 a7 00 00 01 1b |................|
3082 0000c090 01 10 00 00 00 36 00 00 00 04 00 00 00 26 00 00 |.....6.......&..|
3083 0000c0a0 00 00 00 00 ff fc 00 00 00 00 00 00 00 00 00 00 |................|
3084 0000c0b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
3085 0000c0c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
3086 0000c0d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
3087 0000c0e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
...
...
...
和Compact格式有着明显的不同,当大数据在Page页存放不下时,Dynamic行格式不会留768字节在Page页,并且将全部大数据都放在外部存储页。具体的数据页和外部存储页的连接关系同Compact格式一样。
我们再看看Dynamic格式的外部存储页是不是每一个列独享外部存储空间,还是同Compact格式实验过程一样:
CREATE TABLE `testblob` (
`blob1` blob NOT NULL,
`blob2` blob NOT NULL,
`blob3` blob NOT NULL,
`blob4` blob NOT NULL,
`blob5` blob NOT NULL,
`blob6` blob NOT NULL,
`blob7` blob NOT NULL,
`blob8` blob NOT NULL,
`blob9` blob NOT NULL,
`blob10` blob NOT NULL,
`blob11` blob NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
mysql> insert into testblob(blob1,blob2,blob3,blob4,blob5,blob6,blob7,blob8,blob9,blob10,blob11) select repeat('a',8000),repeat('b',8000),repeat('c',8000),repeat('d',8000),repeat('e',8000),repeat('f',8000),repeat('g',8000),repeat('h',8000),repeat('i',8000),repeat('j',8000),repeat('k',8000);
Query OK, 1 row affected (0.10 sec)
Records: 1 Duplicates: 0 Warnings: 0
看一下外部存储页数据:
4599 00011f60 61 61 61 61 61 61 61 61 61 61 61 61 61 61 00 00 |aaaaaaaaaaaaaa..|
4600 00011f70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
好的,可以不用向下看其他列的了,Dynamic的外部存储页也不是共享的。
但是MySQL为什么要这么设计呢?可能是为了实现简单吧,沿着链表通过有效数据大小就能读取blob的全部数据。假如多个字段的blob混在一起,可能设计更复杂,要更新每个字段的偏移量之类的,更新的话页数据管理也比较麻烦。我的个人猜测,呵呵。
总结下Dynamic格式存储大数据的特点:
- 当数据页放不下时,MySQL会将大数据全部放在外部存储页,数据页只留指向外部存储页的指针。
- 外部存储页不共享,即使多余一个字节也是独享16KB的页面。
将列放入外部存储页的标准
当一行中的数据不能在数据页中放下,需要申请外部存储页时,MySQL需要决定将哪一列的数据放到外部存储页,遵循的规则如下:
- 长度固定的字段不会被放到外部存储页(int、char(N)等)
- 长度小于20字节的字段不会被放到外部存储页。(假如放到外部存储页,不仅会单独占据16KB,还要额外的20字节指针,没有必要)
- 对于Compact和REDUNDANT格式的行数据,长度小于768字节的字段不会被放到外部存储页。(这个原因很显然,本来就不够768字节的前缀,总不能生搬硬凑吧)。
当有多个大数据字段满足上面条件,需要被放到外部存储页时,MySQL会优先选择大的字段放到外部存储页,因为这样可以最大限度的省下数据页的空间,使得更多的字段能够被放到数据页。
由于有较多的实验过程,所以显得比较乱,建议看到这篇文章人自己实践一遍,毕竟自己动手会思考更多的问题与细节,理解的也比较深刻
以上是关于MySQL 如何存储大数据的主要内容,如果未能解决你的问题,请参考以下文章