编码器-解码器架构-读书笔记
Posted 取个名字真难呐
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了编码器-解码器架构-读书笔记相关的知识,希望对你有一定的参考价值。
文章目录
1. Encoder-Decoder 架构图
- 目标:通过编码器与解码器架构,我们可以将不同长度的序列先通过
编码器
编码成固定长度的隐藏层状态,再通过解码器
将固定长度的隐藏层状态解码成不同长度的序列
2. Encoder_Decoder 代码
- 接口代码
from torch import nn
class Encoder(nn.Module):
"""编码器-解码器架构的基本编码器接口"""
def __init__(self,**kwargs):
super(Encoder,self).__init__(**kwargs)
def forward(self,X,*args):
raise NotImplementedError
class Decoder(nn.Module):
"""编码器-解码器架构的基本解码器接口"""
def __init__(self,**kwargs):
super(Decoder,self).__init__(**kwargs)
def init_state(self,enc_outputs,*args):
raise NotImplementedError
def forward(self,X,state)
raise NotImplementedError
class EncoderDecoder(nn.Module):
"""编码器-解码器架构的基类"""
def __init__(self,encoder,decoder,**kwargs):
super(EncoderDecoder,self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
def forward(self,enc_X,dec_X,*args):
enc_outputs = self.encoder(enc_X,*args)
dec_state = self.decoder.init_state(enc_outputs,*args)
return self.decoder(dec_X,dec_state)
3. 小结
Encoder-Decoder 架构定义了三个类
- Encoder 类
- Decoder 类
- EncoderDecoder 类
而这种架构非常像我们设计模式中的策略者模式
,通过策略者模式,我们可以非常清晰的将业务逻辑设计出来。 - OmniGraffle画图软件
『TensorFlow』读书笔记_降噪自编码器
之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接)。
# Author : Hellcat # Time : 2017/12/6 import numpy as np import sklearn.preprocessing as prep import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data def xavier_init(fan_in,fan_out, constant = 1): \'\'\' xavier 权重初始化方式 :param fan_in: 行数 :param fan_out: 列数 :param constant: 常数权重,调节初始化范围的倍数 :return: 初始化后的权重tensor \'\'\' low = -constant * np.sqrt(6.0 / (fan_in + fan_out)) high = constant * np.sqrt(6.0 / (fan_in + fan_out)) return tf.random_uniform((fan_in, fan_out), minval=low, maxval=high) class AdditiveGaussianNoiseAutoencoder(): def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus, optimizer=tf.train.AdamOptimizer(),scale=0.1): \'\'\' 初始化自编码器 :param n_input: 输入层结点数 :param n_hidden: 隐藏层节点数 :param transfer_function: 隐藏层激活函数 :param optimizer: 优化器,是实例化的对象 :param scale: 高斯噪声系数 \'\'\' self.n_input = n_input self.n_hidden = n_hidden self.transfer = transfer_function self.scale = tf.placeholder(tf.float32) # 实际网络中调用的 self.training_scale = scale # 训练用噪声系数 network_weights = self._initialize_weights() self.weights = network_weights self.x = tf.placeholder(tf.float32, [None, self.n_input]) self.hidden = \\ self.transfer( tf.add( tf.matmul( self.x + self.scale * tf.random_normal((n_input,)), self.weights[\'w1\']), self.weights[\'b1\'])) # 重建部分没有使用激活函数 self.reconstruction = \\ tf.add( tf.matmul( self.hidden, self.weights[\'w2\']), self.weights[\'b2\']) self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction,self.x),2.0)) # 可以将类的实例过程作为实参传入函数 self.optimizer = optimizer.minimize(self.cost) init = tf.global_variables_initializer() self.sess = tf.Session() self.sess.run(init) def _initialize_weights(self): \'\'\' 初始化全部变量 :return: 装有变量的字典 \'\'\' all_weights = dict() all_weights[\'w1\'] = tf.Variable(xavier_init(self.n_input, self.n_hidden)) all_weights[\'b1\'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32)) all_weights[\'w2\'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32)) all_weights[\'b2\'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32)) return all_weights def partial_fit(self, X): \'\'\' 进行单次训练并返回loss :param X: 训练数据 :return: 本次损失函数值 \'\'\' cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x:X, self.scale:self.training_scale}) return cost def calc_totul_cost(self, X): \'\'\' 计算损失函数,不触发训练 :param X: 训练数据 :return: 损失函数 \'\'\' return self.sess.run(self.cost, feed_dict={self.x:X, self.scale:self.training_scale}) def transform(self, X): \'\'\' 返回隐藏层输出结果,目的是获取抽象后的特征 :param X: 训练数据 :return: 隐藏层输出 \'\'\' return self.sess.run(self.hidden, feed_dict={self.x:X, self.scale:self.training_scale}) def generate(self, hidden=None): \'\'\' 通过隐藏层特征重建 :param hidden: 隐藏层特征 :return: 重建数据 \'\'\' if hidden is None: hidden = np.random.normal(size=[self.n_input]) return self.sess.run(self.reconstruction, feed_dict={self.hidden:hidden}) def reconstruct(self,X): \'\'\' 从原始数据重建 :param X: 训练数据 :return: 重建数据 \'\'\' return self.sess.run(self.reconstruction, feed_dict={self.x:X, self.scale:self.training_scale}) def getWeights(self): \'\'\' 获取参数值 :return: 隐藏层权重 \'\'\' return self.sess.run(self.weights[\'w1\']) def getBaises(self): \'\'\' 获取参数值 :return: 隐藏层偏置 \'\'\' return self.sess.run(self.weights[\'b1\']) def standard_scale(X_train, X_test): \'\'\' 标准化数据 :param X_train: 训练数据 :param X_test: 测试数据 :return: 标准化之后的训练、测试数据 \'\'\' preprocessor = prep.StandardScaler().fit(X_train) X_train = preprocessor.transform(X_train) X_test = preprocessor.transform(X_test) return X_train, X_test def get_random_block_from_data(data, batch_size): start_index = np.random.randint(0, len(data) - batch_size) return data[start_index:(start_index + batch_size)] if __name__ == \'__main__\': mnist = input_data.read_data_sets(\'../../../Mnist_data/\',one_hot=True) X_train, X_test = standard_scale(mnist.train.images, mnist.test.images) n_samples = int(mnist.train.num_examples) train_epochs = 20 batch_size = 20 display_step = 1 autoencoder = AdditiveGaussianNoiseAutoencoder( n_input=784, n_hidden=200, transfer_function=tf.nn.softplus, optimizer=tf.train.AdamOptimizer(learning_rate=0.001), scale=0.01) for epoch in range(train_epochs): avg_cost = 0. totu_batch = int(n_samples / batch_size) for i in range(totu_batch): batch_xs = get_random_block_from_data(X_train, batch_size) # 单数据块训练并计算损失函数 cost = autoencoder.partial_fit(batch_xs) avg_cost += cost / n_samples * batch_size if epoch % display_step == 0: print(\'epoch : %04d, cost = %.9f\' % (epoch + 1,avg_cost)) # 计算测试集上的cost print(\'Total coat:\',str(autoencoder.calc_totul_cost(X_test)))
部分输出如下:
……
epoch : 0020, cost = 1509.876800515
epoch : 0020, cost = 1510.107261985
epoch : 0020, cost = 1510.332509055
epoch : 0020, cost = 1510.551538707
Total coat: 768927.0
1.xavier初始化权重方法
2.函数实参可以是class(),即实例化的类
以上是关于编码器-解码器架构-读书笔记的主要内容,如果未能解决你的问题,请参考以下文章
论文笔记-Deep Learning on Graphs: A Survey(上)
机器翻译数据集 编码器-解码器架构以及实现 动手学深度学习v2
机器翻译数据集 编码器-解码器架构以及实现 动手学深度学习v2