如何在云原生混部场景下利用资源配额高效分配集群资源?
Posted 阿里云云栖号
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何在云原生混部场景下利用资源配额高效分配集群资源?相关的知识,希望对你有一定的参考价值。
简介:由于混部是一个复杂的技术及运维体系,包括 K8s 调度、OS 隔离、可观测性等等各种技术,之前的一篇文章《历经 7 年双 11 实战,阿里巴巴是如何定义云原生混部调度优先级及服务质量的?》,主要聚焦在调度优先级和服务质量模型上,今天我们来关注一下资源配额多租相关的内容。
引言
在阿里集团,离线混部技术从 2014 年开始,经历了七年的双十一检验,内部已实现大规模落地推广,每年为阿里集团节省数十亿的资源成本,整体资源利用率为 70%左右,达到业界领先水平。这两年,我们开始把集团内的混部技术通过产品化的方式输出给业界,通过插件化的方式无缝安装在标准原生的 K8s 集群上,配合混部管控和运维能力,提升集群的资源利用率和产品的综合用户体验。
由于混部是一个复杂的技术及运维体系,包括 K8s 调度、OS 隔离、可观测性等等各种技术,之前的一篇文章《历经 7 年双 11 实战,阿里巴巴是如何定义云原生混部调度优先级及服务质量的?》,主要聚焦在调度优先级和服务质量模型上,今天我们来关注一下资源配额多租相关的内容。
资源配额概述
首先想提一个问题,在设计上,既然 K8s 的调度器已经可以在没有资源的情况下,让 pod 处于 pending 状态,那为什么,还需要有一个资源配额(Resource Quota)的设计?
我们在学习一个系统时,不但要学习设计本身,还需要考虑为什么这个设计是必须的?如果把这个设计从系统中砍掉,会造成什么后果?因为在一个系统中增加任何一项功能设计,都会造成好几项边际效应(Side Effect),包括使用这个系统的人的心智负担,系统的安全性、高可用性,性能,都需要纳入考虑。所以,功能不是越多越好。越是优秀的系统,提供的功能反而是越少越好。例如 C 语言只有 32 个关键字,而用户可以通过自定义组合这些基础能力,实现自己想要的任何需求。
回到原问题,一个集群的资源一定是有限的,无论是物理机上的 CPU、内存、磁盘,还有一些别的资源例如 GPU 卡这些。光靠调度,是否能解决这个问题呢?如果这个集群只有一个用户,那么这个问题其实还是能忍受的,例如看到 pod pending了,那就不创建新的 pod 了;如果新的 pod 比较重要,这个用户可以删掉旧的 pod,然后再创建新的。但是,真实的集群是被多个用户或者说团队同时使用的,当 A 团队资源不够了,再去等 B 团队的人决策什么应用可以腾挪出空间,在这个时候,跨团队的交流效率是非常低下的。所以在调度前,我们就需要再增加一个环节。如下图所示:
在这个环节内,引入了资源配额和租户这 2 个概念。租户,是进行资源配额调配的团队单位。配额,则是多个租户在使用有限的集群资源时,互相在事先达成的一个共识。事先是一个非常重要的关键词,也就是说不能等到 pod 到了调度时、运行时,再去告诉创建者这个 pod 因为配额不足而创建不出来,而是需要在创建 pod 之前,就给各个团队一个对资源的心理预期,每年初在配置资源配额时,给 A 团队或者 B 团队定一个今年可以使用的配额总量,这样当 A 团队配额用完时,A 团队内部可以先进行资源优先级排序,把不重要的 pod 删除掉,如果还不够,那就再和 B 团队商量,是否可以从 B 团队的配额划分一些配额过来。这样的话,就无需任何情况下都要进行点对点的低效率沟通。A 团队和 B 团队在年初的时候就需要对自己的业务的资源用量,做一个大概的估算,也就是资源预算。
所以从这个角度来说,资源配额,是多个租户之间低频高效率沟通合作的一种方式。如果把配额这个概念放到经济学中,是不是就有点计划经济的感觉了呢?其实里面的核心思想是一致的,都是在有限的资源情况下,各个组织之间在事先达成一个高效率的合作沟通方案。
低优资源配额从哪里来?
apiVersion: v1 kind: Pod metadata: annotations: alibabacloud.com/qosClass: BE # LSR,LS,BE spec: containers: - resources: limits: alibabacloud.com/reclaimed-cpu: 1000 # 单位 milli core,1000表示1Core alibabacloud.com/reclaimed-memory: 2048 # 单位 字节,和普通内存一样。单位可以为 Gi Mi Ki GB MB KB requests: alibabacloud.com/reclaimed-cpu: 1000 alibabacloud.com/reclaimed-memory: 2048
再回到今天想讨论的话题,云原生混部的资源配额,和 K8s 社区原生的资源配额有什么区别?从上面的 yaml 配置可以看到,低优资源我们使用了社区的扩展资源来进行管理,所以,很顺理成章的就是对低优 CPU 和低优内存做一个配额总量的控制,并且这些总量会在不同部门之间进行事先的预算分配,这些逻辑和社区的资源配额逻辑是一样的,在这里就不赘述了,大家可以看社区的官方文档:《资源配额》
但是低优资源还有一些逻辑是和社区资源配额是不一样的,并且,由于 CPU 和内存这 2 种资源天生的特性不同,所以还有区别,接下来用一张表来展现这个概念。
可以看到,由于 CPU 是可压缩资源,我们引入了低优 CPU 超卖比这个参数,在原有集群 100C 的基础上,可以另外超卖出 60C 的资源,给所有的低优任务使用。而对于内存这种不可压缩资源而言,总体 100G,按照低优内存分配比这个参数,划分了 40G 之后,剩下给高中优的用量就只剩 60G 了。因为在混部集群的管理中,由此得到的一个结论就是,要给集群的机器配置更多的内存,这样才有足够的数量不影响在线业务使用。
注:可压缩资源(例如 CPU 循环,disk I/O 带宽)都是速率性的可以被回收的,对于一个 task 可以降低这些资源的量而不去杀掉 task;和不可压缩资源(例如内存、硬盘空间)这些一般来说不杀掉 task 就没法回收的。
《在 Google 使用 Borg 进行大规模集群的管理 5-6》- 6.2 性能隔离
这里顺便卖个关子,具体这个配比多少是合适的,包括这几个参数到底设置多少是合理的,在阿里云的商用产品 ACK 敏捷版混部里面会有具体内容输出。
基于容量的弹性配额调度
云原生混部在配额方面,和社区的第二个区别在哪里呢?可以看到的是,引入混部后会引入大量的离线运算任务,和比较有规律的在线业务相比,离线任务像洪水一样是一波一波的,在整个时间区间内更不规律。有可能 A 团队在跑大数据计算,把自己的低优配额都跑完了,但是 B 团队的大数据计算这个时候还没跑,还有空闲的配额。
那么,是否可以把这部分的配额利用起来,先“借”给 A 部门使用呢?这里就可以引入另外一个能力,基于容量的配额调度。
- 支持定义不同层级的资源配额。如上图所示,您可以根据具体情况(比如:公司的组织结构)配置多个层级的弹性配额。弹性配额组的叶子节点可以对应多个 Namespace,但同一个 Namespace 只能归属于一个叶子节点。
- 支持不同弹性配额之间的资源借用和回收。
- Min:您可以使用的保障资源(Guaranteed Resource)。当整个集群资源紧张时,所有用户使用的 Min 总和需要小于集群的总资源量。
- Max:您可以使用的资源上限。
引入了这个弹性配额调度后,我们发现组织中多个团队在使用低优资源时的“弹性”更强了,当 B 团队有空闲的配额时,可以动态的“借”给 A 团队使用,反之亦然。这样集群在全时间段里面的利用率进一步提升,更充分和有效的利用了集群的资源。
相关解决方案介绍
进入了 2022 年,混部在阿里内部已经成为了一个非常成熟的技术,为阿里每年节省数十亿的成本,是阿里数据中心的基本能力。而阿里云也把这些成熟的技术经过两年的时间,沉淀成为混部产品,开始服务于各行各业。
在阿里云的产品族里面,我们会把混部的能力通过 ACK 敏捷版,以及 CNStack(CloudNative Stack)产品家族,对外进行透出,并结合龙蜥操作系统(OpenAnolis),形成完整的云原生数据中心混部的一体化解决方案,输出给我们的客户。
预告:关于混部水位线,也就是保障可靠性的最后一道防线,我们会在后一篇文章里面进行介绍。
参考链接
1、《资源配额》:
2、《在Google使用Borg进行大规模集群的管理 5-6》:
在Google使用Borg进行大规模集群的管理 5-6 - 难易相成 - OSCHINA - 中文开源技术交流社区
3、《Capacity Scheduling》:
通过capacity调度来提升集群的整体资源利用率_容器服务 ACK-阿里云
4、龙蜥操作系统OpenAnolis 龙蜥操作系统开源社区
本文为阿里云原创内容,未经允许不得转载。
以上是关于如何在云原生混部场景下利用资源配额高效分配集群资源?的主要内容,如果未能解决你的问题,请参考以下文章
openEuler资源利用率提升之道06:虚拟机混部OpenStack调度
历经 7 年双 11 实战,阿里巴巴是如何定义云原生混部调度优先级及服务质量的?
双11特刊 | 全面云原生化,数据库实例独共享混部 最高降低30%成本