c_cpp CV - 计算彩色图像的历史图
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了c_cpp CV - 计算彩色图像的历史图相关的知识,希望对你有一定的参考价值。
#if !defined COLHISTOGRAM
#define COLHISTOGRAM
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
class ColorHistogram {
private:
int histSize[3];
float hranges[2];
const float* ranges[3];
int channels[3];
public:
ColorHistogram() {
// Prepare arguments for a color histogram
histSize[0]= histSize[1]= histSize[2]= 256;
hranges[0]= 0.0; // BRG range
hranges[1]= 255.0;
ranges[0]= hranges; // all channels have the same range
ranges[1]= hranges;
ranges[2]= hranges;
channels[0]= 0; // the three channels
channels[1]= 1;
channels[2]= 2;
}
// Computes the histogram.
cv::MatND getHistogram(const cv::Mat &image) {
cv::MatND hist;
// BGR color histogram
hranges[0]= 0.0; // BRG range
hranges[1]= 255.0;
channels[0]= 0; // the three channels
channels[1]= 1;
channels[2]= 2;
// Compute histogram
cv::calcHist(&image,
1, // histogram of 1 image only
channels, // the channel used
cv::Mat(), // no mask is used
hist, // the resulting histogram
3, // it is a 3D histogram
histSize, // number of bins
ranges // pixel value range
);
return hist;
}
// Computes the histogram.
cv::SparseMat getSparseHistogram(const cv::Mat &image) {
cv::SparseMat hist(3,histSize,CV_32F);
// BGR color histogram
hranges[0]= 0.0; // BRG range
hranges[1]= 255.0;
channels[0]= 0; // the three channels
channels[1]= 1;
channels[2]= 2;
// Compute histogram
cv::calcHist(&image,
1, // histogram of 1 image only
channels, // the channel used
cv::Mat(), // no mask is used
hist, // the resulting histogram
3, // it is a 3D histogram
histSize, // number of bins
ranges // pixel value range
);
return hist;
}
// Computes the 2D ab histogram.
// BGR source image is converted to Lab
cv::MatND getabHistogram(const cv::Mat &image) {
cv::MatND hist;
// Convert to Lab color space
cv::Mat lab;
cv::cvtColor(image, lab, CV_BGR2Lab);
// Prepare arguments for a 2D color histogram
hranges[0]= -128.0;
hranges[1]= 127.0;
channels[0]= 1; // the two channels used are ab
channels[1]= 2;
// Compute histogram
cv::calcHist(&lab,
1, // histogram of 1 image only
channels, // the channel used
cv::Mat(), // no mask is used
hist, // the resulting histogram
2, // it is a 2D histogram
histSize, // number of bins
ranges // pixel value range
);
return hist;
}
// Computes the 1D Hue histogram with a mask.
// BGR source image is converted to HSV
cv::MatND getHueHistogram(const cv::Mat &image) {
cv::MatND hist;
// Convert to Lab color space
cv::Mat hue;
cv::cvtColor(image, hue, CV_BGR2HSV);
// Prepare arguments for a 1D hue histogram
hranges[0]= 0.0;
hranges[1]= 180.0;
channels[0]= 0; // the hue channel
// Compute histogram
cv::calcHist(&hue,
1, // histogram of 1 image only
channels, // the channel used
cv::Mat(), // no mask is used
hist, // the resulting histogram
1, // it is a 1D histogram
histSize, // number of bins
ranges // pixel value range
);
return hist;
}
cv::Mat colorReduce(const cv::Mat &image, int div=64) {
int n= static_cast<int>(log(static_cast<double>(div))/log(2.0));
// mask used to round the pixel value
uchar mask= 0xFF<<n; // e.g. for div=16, mask= 0xF0
cv::Mat_<cv::Vec3b>::const_iterator it= image.begin<cv::Vec3b>();
cv::Mat_<cv::Vec3b>::const_iterator itend= image.end<cv::Vec3b>();
// Set output image (always 1-channel)
cv::Mat result(image.rows,image.cols,image.type());
cv::Mat_<cv::Vec3b>::iterator itr= result.begin<cv::Vec3b>();
for ( ; it!= itend; ++it, ++itr) {
(*itr)[0]= ((*it)[0]&mask) + div/2;
(*itr)[1]= ((*it)[1]&mask) + div/2;
(*itr)[2]= ((*it)[2]&mask) + div/2;
}
return result;
}
};
#endif
以上是关于c_cpp CV - 计算彩色图像的历史图的主要内容,如果未能解决你的问题,请参考以下文章
计算机视觉之图像特效(实现图像灰度处理等功能)(待更新。。。)
OpenCV Python equalizeHist 彩色图像
Python使用OpenCV加载彩色图像为BGR图计算每个图像通道的均值(mean of each channel)可视化图像在每个通道的均值