python Python中的一致哈希实现。

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python Python中的一致哈希实现。相关的知识,希望对你有一定的参考价值。

# -*- coding: utf-8 -*-
"""
    hash_ring
    ~~~~~~~~~~~~~~
    Implements consistent hashing that can be used when
    the number of server nodes can increase or decrease (like in memcached).

    Consistent hashing is a scheme that provides a hash table functionality
    in a way that the adding or removing of one slot
    does not significantly change the mapping of keys to slots.

    More information about consistent hashing can be read in these articles:

        "Web Caching with Consistent Hashing":
            http://www8.org/w8-papers/2a-webserver/caching/paper2.html

        "Consistent hashing and random trees:
        Distributed caching protocols for relieving hot spots on the World Wide Web (1997)":
            http://citeseerx.ist.psu.edu/legacymapper?did=38148


    Example of usage::

        memcache_servers = ['192.168.0.246:11212',
                            '192.168.0.247:11212',
                            '192.168.0.249:11212']

        ring = HashRing(memcache_servers)
        server = ring.get_node('my_key')

    :copyright: 2008 by Amir Salihefendic.
    :license: BSD
"""

import math
import sys
from bisect import bisect

if sys.version_info >= (2, 5):
    import hashlib
    md5_constructor = hashlib.md5
else:
    import md5
    md5_constructor = md5.new

class HashRing(object):

    def __init__(self, nodes=None, weights=None):
        """`nodes` is a list of objects that have a proper __str__ representation.
        `weights` is dictionary that sets weights to the nodes.  The default
        weight is that all nodes are equal.
        """
        self.ring = dict()
        self._sorted_keys = []

        self.nodes = nodes

        if not weights:
            weights = {}
        self.weights = weights

        self._generate_circle()

    def _generate_circle(self):
        """Generates the circle.
        """
        total_weight = 0
        for node in self.nodes:
            total_weight += self.weights.get(node, 1)

        for node in self.nodes:
            weight = 1

            if node in self.weights:
                weight = self.weights.get(node)

            factor = math.floor((40*len(self.nodes)*weight) / total_weight);

            for j in xrange(0, int(factor)):
                b_key = self._hash_digest( '%s-%s' % (node, j) )

                for i in xrange(0, 3):
                    key = self._hash_val(b_key, lambda x: x+i*4)
                    self.ring[key] = node
                    self._sorted_keys.append(key)

        self._sorted_keys.sort()

    def get_node(self, string_key):
        """Given a string key a corresponding node in the hash ring is returned.

        If the hash ring is empty, `None` is returned.
        """
        pos = self.get_node_pos(string_key)
        if pos is None:
            return None
        return self.ring[ self._sorted_keys[pos] ]

    def get_node_pos(self, string_key):
        """Given a string key a corresponding node in the hash ring is returned
        along with it's position in the ring.

        If the hash ring is empty, (`None`, `None`) is returned.
        """
        if not self.ring:
            return None

        key = self.gen_key(string_key)

        nodes = self._sorted_keys
        pos = bisect(nodes, key)

        if pos == len(nodes):
            return 0
        else:
            return pos

    def iterate_nodes(self, string_key, distinct=True):
        """Given a string key it returns the nodes as a generator that can hold the key.

        The generator iterates one time through the ring
        starting at the correct position.

        if `distinct` is set, then the nodes returned will be unique,
        i.e. no virtual copies will be returned.
        """
        if not self.ring:
            yield None, None

        returned_values = set()
        def distinct_filter(value):
            if str(value) not in returned_values:
                returned_values.add(str(value))
                return value

        pos = self.get_node_pos(string_key)
        for key in self._sorted_keys[pos:]:
            val = distinct_filter(self.ring[key])
            if val:
                yield val

        for i, key in enumerate(self._sorted_keys):
            if i < pos:
                val = distinct_filter(self.ring[key])
                if val:
                    yield val

    def gen_key(self, key):
        """Given a string key it returns a long value,
        this long value represents a place on the hash ring.

        md5 is currently used because it mixes well.
        """
        b_key = self._hash_digest(key)
        return self._hash_val(b_key, lambda x: x)

    def _hash_val(self, b_key, entry_fn):
        return (( b_key[entry_fn(3)] << 24)
                |(b_key[entry_fn(2)] << 16)
                |(b_key[entry_fn(1)] << 8)
                | b_key[entry_fn(0)] )

    def _hash_digest(self, key):
        m = md5_constructor()
        m.update(key)
        return map(ord, m.digest())
        
        
        
####################
# memcache_ring.py #
####################

import memcache
import types

from hash_ring import HashRing

class MemcacheRing(memcache.Client):
    """Extends python-memcache so it uses consistent hashing to
    distribute the keys.
    """

    def __init__(self, servers, *k, **kw):
        self.hash_ring = HashRing(servers)

        memcache.Client.__init__(self, servers, *k, **kw)

        self.server_mapping = {}
        for server_uri, server_obj in zip(servers, self.servers):
            self.server_mapping[server_uri] = server_obj

    def _get_server(self, key):
        if type(key) == types.TupleType:
            return memcache.Client._get_server(key)

        for i in range(self._SERVER_RETRIES):
            iterator = self.hash_ring.iterate_nodes(key)
            for server_uri in iterator:
                server_obj = self.server_mapping[server_uri]
                if server_obj.connect():
                    return server_obj, key

        return None, None

以上是关于python Python中的一致哈希实现。的主要内容,如果未能解决你的问题,请参考以下文章

python 一致性哈希算法的python简单实现:HTTP://xiaorui.cc/2014/09/20/%E4%BD%BF%E7%94%A8hashring%E5%AE%9E%E7%8E%B0p

python 一致性哈希 分布式

Python字典的底层实现

python实现简单的负载均衡

使用python将字典(哈希)存储在文件中的有效方法?

一致性哈希的实现