python 一致性哈希 分布式
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 一致性哈希 分布式相关的知识,希望对你有一定的参考价值。
hash_ring
# -*- coding: utf-8 -*- """ hash_ring ~~~~~~~~~~~~~~ Implements consistent hashing that can be used when the number of server nodes can increase or decrease (like in memcached). Consistent hashing is a scheme that provides a hash table functionality in a way that the adding or removing of one slot does not significantly change the mapping of keys to slots. More information about consistent hashing can be read in these articles: "Web Caching with Consistent Hashing": http://www8.org/w8-papers/2a-webserver/caching/paper2.html "Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the World Wide Web (1997)": http://citeseerx.ist.psu.edu/legacymapper?did=38148 Example of usage:: memcache_servers = [‘192.168.0.246:11212‘, ‘192.168.0.247:11212‘, ‘192.168.0.249:11212‘] ring = HashRing(memcache_servers) server = ring.get_node(‘my_key‘) :copyright: 2008 by Amir Salihefendic. :license: BSD """ import math import sys from bisect import bisect if sys.version_info >= (2, 5): import hashlib md5_constructor = hashlib.md5 else: import md5 md5_constructor = md5.new class HashRing(object): def __init__(self, nodes=None, weights=None): """`nodes` is a list of objects that have a proper __str__ representation. `weights` is dictionary that sets weights to the nodes. The default weight is that all nodes are equal. """ self.ring = dict() self._sorted_keys = [] self.nodes = nodes if not weights: weights = {} self.weights = weights self._generate_circle() def _generate_circle(self): """Generates the circle. """ total_weight = 0 for node in self.nodes: total_weight += self.weights.get(node, 1) for node in self.nodes: weight = 1 if node in self.weights: weight = self.weights.get(node) factor = math.floor((40*len(self.nodes)*weight) / total_weight); for j in range(0, int(factor)): b_key = self._hash_digest( ‘%s-%s‘ % (node, j) ) for i in range(0, 3): key = self._hash_val(b_key, lambda x: x+i*4) self.ring[key] = node self._sorted_keys.append(key) self._sorted_keys.sort() def get_node(self, string_key): """Given a string key a corresponding node in the hash ring is returned. If the hash ring is empty, `None` is returned. """ pos = self.get_node_pos(string_key) if pos is None: return None return self.ring[ self._sorted_keys[pos] ] def get_node_pos(self, string_key): """Given a string key a corresponding node in the hash ring is returned along with it‘s position in the ring. If the hash ring is empty, (`None`, `None`) is returned. """ if not self.ring: return None key = self.gen_key(string_key) nodes = self._sorted_keys pos = bisect(nodes, key) if pos == len(nodes): return 0 else: return pos def iterate_nodes(self, string_key, distinct=True): """Given a string key it returns the nodes as a generator that can hold the key. The generator iterates one time through the ring starting at the correct position. if `distinct` is set, then the nodes returned will be unique, i.e. no virtual copies will be returned. """ if not self.ring: yield None, None returned_values = set() def distinct_filter(value): if str(value) not in returned_values: returned_values.add(str(value)) return value pos = self.get_node_pos(string_key) for key in self._sorted_keys[pos:]: val = distinct_filter(self.ring[key]) if val: yield val for i, key in enumerate(self._sorted_keys): if i < pos: val = distinct_filter(self.ring[key]) if val: yield val def gen_key(self, key): """Given a string key it returns a long value, this long value represents a place on the hash ring. md5 is currently used because it mixes well. """ b_key = self._hash_digest(key) return self._hash_val(b_key, lambda x: x) def _hash_val(self, b_key, entry_fn): return (( b_key[entry_fn(3)] << 24) |(b_key[entry_fn(2)] << 16) |(b_key[entry_fn(1)] << 8) | b_key[entry_fn(0)] ) def _hash_digest(self, key): m = md5_constructor() m.update(bytes(key,encoding=‘utf-8‘)) #return map(ord, m.digest()) return list(m.digest()) ‘‘‘ memcache_servers = [‘192.168.0.246:11212‘, ‘192.168.0.247:11212‘, ‘192.168.0.249:11212‘] ring = HashRing(memcache_servers) server = ring.get_node(‘my_key‘) ‘‘‘ # 增加权重 memcache_servers = [‘192.168.0.246:11212‘, ‘192.168.0.247:11212‘, ‘192.168.0.249:11212‘] weights = { ‘192.168.0.246:11212‘: 1, ‘192.168.0.247:11212‘: 2, ‘192.168.0.249:11212‘: 1 } ring = HashRing(memcache_servers, weights) server = ring.get_node(‘my_key‘) print(server)
增加删除机器时有可能数据找不到
以上是关于python 一致性哈希 分布式的主要内容,如果未能解决你的问题,请参考以下文章