java 此实现使用AVL平衡树。允许树中任何节点的高度为两个子树的最大差异为一。
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了java 此实现使用AVL平衡树。允许树中任何节点的高度为两个子树的最大差异为一。相关的知识,希望对你有一定的参考价值。
package chapter3_searching.C3_3_BalancedSearchTrees;
import edu.princeton.cs.algs4.Queue;
import java.util.NoSuchElementException;
import java.util.Scanner;
/**
* The {@code AvlTree} class represents an ordered symbol table of generic
* key-value pairs.
* This implements uses a AVL balanced tree.
* Allow any node in the tree of the height of the two subtree biggest
* difference for one.
* It requires that the key type implements the {@code Comparable} interface
* and calls the {@code compareTo()} and method to compare two keys.
* It does not call either {@code equals()} or {@code hashCode()}.
* {@code K} is key,{@code V} is value.
* <p>
* Created by SylvanasSun on 2017/4/3.
*
* @author SylvanasSun
*/
public class AvlTree<K extends Comparable<K>, V> {
private Node root;
private class Node {
private K key;
private V value;
// left subtree,right subtree,parent node
private Node left, right, parent;
private int size; // the number of children node size
private int balance; // the number of balance
private int depth; // the number of tree depth
Node(K key, V value, int size, Node parent) {
this.key = key;
this.value = value;
this.size = size;
this.parent = parent;
this.depth = 1;
this.balance = 0;
}
Node(K key, V value, int size) {
this.key = key;
this.value = value;
this.size = size;
this.depth = 1;
this.balance = 0;
}
}
/**
* Initializes an empty symbol table.
*/
public AvlTree() {
}
/**
* Returns the number of key-value pairs in this symbol table.
*
* @return the number of key-value pairs in this symbol table
*/
public int size() {
return size(root);
}
/**
* Returns the number of keys in the symbol table in the given range.
*
* @param lo minimum endpoint
* @param hi maximum endpoint
* @return the number of keys in the sybol table between {@code lo}
* (inclusive) and {@code hi} (inclusive)
* @throws IllegalArgumentException if either {@code lo} or {@code hi}
* is {@code null}
*/
public int size(K lo, K hi) {
if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
if (hi == null) throw new IllegalArgumentException("second argument to size() is null");
if (lo.compareTo(hi) > 0) return 0;
if (contains(hi)) return rank(hi) - rank(lo) + 1;
else return rank(hi) - rank(lo);
}
private int size(Node x) {
if (x == null) return 0;
return x.size;
}
/**
* This symbol table is empty?
*
* @return {@code true} if this symbol table is empty and {@code false} otherwise
*/
public boolean isEmpty() {
return root == null;
}
/**
* Returns the number of tree height.
*
* @return the number of tree height
*/
public int height() {
return height(root);
}
private int height(Node x) {
if (x == null)
return 0;
return x.depth;
}
/**
* Returns the value associated with the given key.
*
* @param key the key
* @return the value associated with the given key if the key is in the symbol table
* and {@code null} if the key is not in the symbol table
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public V get(K key) {
if (key == null)
throw new IllegalArgumentException("call get() with key is null.");
return get(root, key);
}
private V get(Node x, K key) {
while (x != null) {
int cmp = key.compareTo(x.key);
if (cmp < 0) {
x = x.left;
} else if (cmp > 0) {
x = x.right;
} else {
return x.value;
}
}
return null;
}
/**
* Does this symbol table contain the given key?
*
* @param key the key
* @return {@code true} if this symbol table contains {@code key}
* and {@code false} otherwise
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public boolean contains(K key) {
return get(key) != null;
}
/**
* Inserts the specified key-value pair into the symbol table, overwriting the old
* value with the new value if the symbol table already contains the specified key.
* Deletes the specified key (and its associated value) from this symbol table
* if the specified value is {@code null}.
*
* @param key the key
* @param value the value
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public void put(K key, V value) {
if (key == null)
throw new IllegalArgumentException("called put() with key is null.");
if (value == null) {
remove(key);
return;
}
put(root, key, value);
}
private void put(Node x, K key, V value) {
Node parent = x;
int cmp = 0;
while (x != null) {
parent = x;
cmp = key.compareTo(x.key);
if (cmp < 0) {
x = x.left;
} else if (cmp > 0) {
x = x.right;
} else {
x.value = value;
return;
}
}
// if not find key,create new node
x = new Node(key, value, 1, parent);
if (parent != null) {
if (cmp < 0)
parent.left = x;
else
parent.right = x;
} else {
root = x;
}
// fixup balance
balance(x);
}
/**
* Removes the specified key and its associated value from this symbol table
* (if the key is is in this symbol table) and return old value.
*
* @param key the key
* @return the old value (if return {@code null} symbol table no contain the key)
* @throws IllegalArgumentException if {@code key} is {@code null}
* @throws NoSuchElementException if the symbol table is empty
*/
public V remove(K key) {
if (key == null)
throw new IllegalArgumentException("called remove() with key is null.");
if (isEmpty())
throw new NoSuchElementException("called remove() with empty symbol table.");
V oldValue = get(key);
if (oldValue == null)
return null;
remove(root, key);
return oldValue;
}
/**
* Remove node x and then rebalance the tree.
*/
private void remove(Node x, K key) {
while (x != null) {
int cmp = key.compareTo(x.key);
if (cmp < 0)
x = x.left;
else if (cmp > 0)
x = x.right;
else {
// if x have two child node
// use successor replace x
if (x.left != null && x.right != null) {
Node s = successor(x);
x.key = s.key;
x.value = s.value;
x = s;
}
// fixup at replacement node, if it exists.
Node replacement = (x.left != null ? x.left : x.right);
removeSingle(x, replacement);
x = null;
}
}
}
private void removeSingle(Node x, Node replacement) {
if (replacement != null) {
// link replacement to parent
replacement.parent = x.parent;
if (x.parent == null)
root = replacement;
else if (x == x.parent.left)
x.parent.left = replacement;
else
x.parent.right = replacement;
x.left = x.right = x.parent = null;
// fixup balance
balance(replacement);
} else if (x.parent == null) {
// if x is only node
root = null;
} else {
// if no children
if (x == x.parent.left)
x.parent.left = null;
else if (x == x.parent.right)
x.parent.right = null;
// fixup balance
balance(x);
x.parent = null;
}
}
/**
* Removes the smallest key and associated value from the symbol table.
* and return old value.
*
* @return @return the old value (if return {@code null} symbol table no contain the key)
* @throws NoSuchElementException if the symbol table is empty
*/
public V removeMin() {
if (isEmpty())
throw new NoSuchElementException("called removeMin() with empty symbol table.");
V oldValue = get(min());
if (oldValue == null)
return null;
removeMin(root);
return oldValue;
}
private void removeMin(Node x) {
while (x != null) {
if (x.left != null)
x = x.left;
else {
Node replacement = x.right;
removeSingle(x, replacement);
x = null;
}
}
}
/**
* Removes the largest key and associated value from the symbol table.
* and return old value.
*
* @return @return the old value (if return {@code null} symbol table no contain the key)
* @throws NoSuchElementException if the symbol table is empty
*/
public V removeMax() {
if (isEmpty())
throw new NoSuchElementException("called removeMax() with empty symbol table.");
V oldValue = get(max());
if (oldValue == null)
return null;
removeMax(root);
return oldValue;
}
private void removeMax(Node x) {
while (x != null) {
if (x.right != null)
x = x.right;
else {
Node replacement = x.left;
removeSingle(x, replacement);
x = null;
}
}
}
/**
* Returns the smallest key in the symbol table.
*
* @return the smallest key in the symbol table
* @throws NoSuchElementException if the symbol table is empty
*/
public K min() {
if (isEmpty())
throw new NoSuchElementException("called min() with empty symbol table.");
return min(root).key;
}
private Node min(Node x) {
while (x.left != null) {
x = x.left;
}
return x;
}
/**
* Returns the largest key in the symbol table.
*
* @return the largest key in the symbol table
* @throws NoSuchElementException if the symbol table is empty
*/
public K max() {
if (isEmpty())
throw new NoSuchElementException("called max() with empty symbol table.");
return max(root).key;
}
private Node max(Node x) {
while (x.right != null) {
x = x.right;
}
return x;
}
/**
* Returns the largest key in the symbol table less than or equals to {@code key}.
*
* @param key the key
* @return the largest key in the symbol table less than or equals to {@code key}
* @throws IllegalArgumentException if {@code key} is {@code null}
* @throws NoSuchElementException if there is no such key
*/
public K floor(K key) {
if (key == null)
throw new IllegalArgumentException("called floor() with key is null.");
if (isEmpty())
throw new NoSuchElementException("called floor() with empty symbol table.");
Node x = floor(root, key);
if (x == null)
return null;
else
return x.key;
}
private Node floor(Node x, K key) {
while (x != null) {
int cmp = key.compareTo(x.key);
if (cmp > 0) {
if (x.right != null)
x = x.right;
else
return x;
} else if (cmp < 0) {
if (x.left != null) {
x = x.left;
} else {
Node parent = x.parent;
Node t = x;
while (parent != null && t == parent.left) {
t = parent;
parent = parent.parent;
}
return parent;
}
} else {
return x;
}
}
return null;
}
/**
* Returns the smallest key in the symbol table greater than or equals to {@code key}.
*
* @param key the key
* @return the smallest key in the symbol table greater than or equals to {@code key}
* @throws IllegalArgumentException if {@code key} is {@code null}
* @throws NoSuchElementException if there is no such key
*/
public K ceiling(K key) {
if (key == null)
throw new IllegalArgumentException("called ceiling() with key is null.");
if (isEmpty())
throw new NoSuchElementException("called ceiling() with empty symbol table.");
Node x = ceiling(root, key);
if (x == null)
return null;
else
return x.key;
}
private Node ceiling(Node x, K key) {
while (x != null) {
int cmp = key.compareTo(x.key);
if (cmp < 0) {
if (x.left != null)
x = x.left;
else
return x;
} else if (cmp > 0) {
if (x.right != null) {
x = x.right;
} else {
Node parent = x.parent;
Node t = x;
while (parent != null && t == parent.right) {
t = parent;
parent = parent.parent;
}
return parent;
}
} else {
return x;
}
}
return null;
}
/**
* Return the kth smallest key in the symbol table.
*
* @param k the order statistic
* @return the {@code k}th smallest key in the symbol table
* @throws IllegalArgumentException unless {@code k} is between 0 and <em>n</em> - 1
*/
public K select(int k) {
if (k < 0 || k >= size())
throw new IllegalArgumentException("called select() with invalid argument. ");
Node x = select(root, k);
if (x == null)
return null;
else
return x.key;
}
private Node select(Node x, int k) {
while (x != null) {
int t = size(x.left);
if (t > k)
x = x.left;
else if (t < k) {
x = x.right;
k = k - t - 1;
} else
return x;
}
return null;
}
/**
* Return the number of keys in the symbol table strictly less than {@code key}.
*
* @param key the key
* @return the number of keys in the symbol table strictly less than {@code key}
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public int rank(K key) {
if (key == null)
throw new IllegalArgumentException("called rank() with key is null.");
return rank(root, key);
}
private int rank(Node x, K key) {
if (x == null)
return 0;
int cmp = key.compareTo(x.key);
if (cmp < 0)
return rank(x.left, key);
else if (cmp > 0)
return 1 + size(x.left) + rank(x.right, key);
else
return size(x.left);
}
/**
* Returns all keys in the symbol table as an {@code Iterable}.
* To iterate over all of the keys in the symbol table named {@code st},
* use the foreach notation: {@code for (Key key : st.keys())}.
*
* @return all keys in the symbol table as an {@code Iterable}
*/
public Iterable<K> keys() {
if (isEmpty()) return new Queue<K>();
return keys(min(), max());
}
/**
* Returns all keys in the symbol table in the given range,
* as an {@code Iterable}.
*
* @param lo minimum endpoint
* @param hi maximum endpoint
* @return all keys in the sybol table between {@code lo}
* (inclusive) and {@code hi} (inclusive) as an {@code Iterable}
* @throws IllegalArgumentException if either {@code lo} or {@code hi}
* is {@code null}
*/
public Iterable<K> keys(K lo, K hi) {
if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");
Queue<K> queue = new Queue<K>();
// if (isEmpty() || lo.compareTo(hi) > 0) return queue;
keys(root, queue, lo, hi);
return queue;
}
// add the keys between lo and hi in the subtree rooted at x
// to the queue
private void keys(Node x, Queue<K> queue, K lo, K hi) {
if (x == null) return;
int cmplo = lo.compareTo(x.key);
int cmphi = hi.compareTo(x.key);
if (cmplo < 0) keys(x.left, queue, lo, hi);
if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
if (cmphi > 0) keys(x.right, queue, lo, hi);
}
/**
* Returns the successor of the node x or null if no such.
* successor is the right subtree the leftmost node.
*/
private Node successor(Node x) {
if (x == null)
return null;
else if (x.right != null) {
Node r = x.right;
while (r.left != null)
r = r.left;
return r;
} else {
Node p = x.parent;
Node t = x;
// if x the right node is null
while (p != null && t == p.right) {
t = p;
p = p.parent;
}
return p;
}
}
/*************************************************************
* Helper functions
*************************************************************/
// re balance tree
private void balance(Node x) {
while (x != null) {
x.depth = calcDepth(x);
x.balance = calcBalance(x);
// if x left subtree high,rotateRight
if (x.balance >= 2) {
// if x.left.right high,rotateLeft
if (x.left != null && x.left.balance == -1) {
x.left = rotateLeft(x.left);
}
x = rotateRight(x);
}
// if x right subtree high,rotateLeft
if (x.balance <= -2) {
// if x.right.left high,rotateRight
if (x.right != null && x.right.balance == 1) {
x.right = rotateRight(x.right);
}
x = rotateLeft(x);
}
x.size = 1 + size(x.left) + size(x.right);
x = x.parent;
}
}
// calculate node x depth
private int calcDepth(Node x) {
int depth = 0;
if (x.left != null)
depth = x.left.depth;
if (x.right != null && x.right.depth > depth)
depth = x.right.depth;
// parent + left or right depth
depth++;
return depth;
}
// calculate node x balance(left.depth - right.depth)
private int calcBalance(Node x) {
int leftDepth = 0;
int rightDepth = 0;
if (x.left != null)
leftDepth = x.left.depth;
if (x.right != null)
rightDepth = x.right.depth;
return leftDepth - rightDepth;
}
private Node rotateLeft(Node x) {
Node t = x.right;
x.right = t.left;
t.left = x;
if (x.parent != null) {
t.parent = x.parent;
if (x.parent.left == x)
x.parent.left = t;
else
x.parent.right = t;
} else {
t.parent = null;
root = t;
}
x.parent = t;
// calculate depth and balance
x.depth = calcDepth(x);
x.balance = calcBalance(x);
t.depth = calcDepth(t);
t.balance = calcBalance(t);
// calculate size
t.size = x.size;
x.size = 1 + size(x.left) + size(x.right);
return t;
}
private Node rotateRight(Node x) {
Node t = x.left;
x.left = t.right;
t.right = x;
if (x.parent != null) {
t.parent = x.parent;
if (x.parent.left == x)
x.parent.left = t;
else
x.parent.right = t;
} else {
t.parent = null;
root = t;
}
x.parent = t;
// calculate depth and balance
x.depth = calcDepth(x);
x.balance = calcBalance(x);
t.depth = calcDepth(t);
t.balance = calcBalance(t);
// calculate size
t.size = x.size;
x.size = 1 + size(x.left) + size(x.right);
return t;
}
/**
* Unit Test
*
* @param args command-line arguments
*/
public static void main(String[] args) {
AvlTree<String, Integer> tree = new AvlTree<String, Integer>();
Scanner scanner = new Scanner(System.in);
int count = 1;
while (scanner.hasNextLine()) {
String s = scanner.nextLine();
if ("end".equalsIgnoreCase(s))
break;
if ("put".equalsIgnoreCase(s.substring(0, 3))) {
String key = s.substring(4);
System.out.println("put " + key + "-" + count);
tree.put(key, count++);
System.out.println("tree depth: " + tree.height());
} else if ("get".equalsIgnoreCase(s.substring(0, 3))) {
String key = s.substring(4);
System.out.println("get " + key + "-" + tree.get(key));
} else if ("removeMin".equalsIgnoreCase(s)) {
String k = tree.min();
Integer v = tree.removeMin();
System.out.println("remove min " + k + "-" + v);
System.out.println("tree depth: " + tree.height());
} else if ("removeMax".equalsIgnoreCase(s)) {
String k = tree.max();
Integer v = tree.removeMax();
System.out.println("remove max " + k + "-" + v);
System.out.println("tree depth: " + tree.height());
} else if ("select".equalsIgnoreCase(s.substring(0, 6))) {
String k = s.substring(7);
System.out.println("select " + k + "result: " + tree.select(Integer.parseInt(k)));
} else if ("rank".equalsIgnoreCase(s.substring(0, 4))) {
String k = s.substring(5);
System.out.println("rank " + k + "result: " + tree.rank(k));
} else if ("remove".equalsIgnoreCase(s.substring(0, 6))) {
String k = s.substring(7);
Integer v = tree.remove(k);
System.out.println("remove " + k + "-" + v);
System.out.println("tree depth: " + tree.height());
} else if ("floor".equalsIgnoreCase(s.substring(0, 5))) {
String k = s.substring(6);
System.out.println("floor " + k + " result: " + tree.floor(k));
} else if ("ceiling".equalsIgnoreCase(s.substring(0, 7))) {
String k = s.substring(8);
System.out.println("ceiling " + k + "result: " + tree.ceiling(k));
} else if ("findAll".equalsIgnoreCase(s)) {
System.out.println("tree size: " + tree.size());
System.out.println("tree depth: " + tree.height());
for (String key : tree.keys()) {
System.out.println(key + "-" + tree.get(key));
}
} else {
System.out.println("invalid order....");
}
}
}
}
以上是关于java 此实现使用AVL平衡树。允许树中任何节点的高度为两个子树的最大差异为一。的主要内容,如果未能解决你的问题,请参考以下文章