text geopandas空间连接

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了text geopandas空间连接相关的知识,希望对你有一定的参考价值。

{
  "cells": [
    {
      "metadata": {},
      "cell_type": "markdown",
      "source": "## Spatial Joins with geopandas\n\nFrom the [geopandas docs](http://geopandas.org/mergingdata.html).\n\nSuppose we have a `cities` geodataframe with points and another gdf called `world` with country polygons.  We can perform a 'spatial join' that merges based on which points 'intersect' or fall into polygons."
    },
    {
      "metadata": {
        "trusted": true
      },
      "cell_type": "code",
      "source": "import geopandas as gpd\nimport matplotlib.pyplot as plt",
      "execution_count": 1,
      "outputs": []
    },
    {
      "metadata": {
        "trusted": true
      },
      "cell_type": "code",
      "source": "world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))\ncities = gpd.read_file(gpd.datasets.get_path('naturalearth_cities'))",
      "execution_count": 2,
      "outputs": []
    },
    {
      "metadata": {
        "trusted": true
      },
      "cell_type": "code",
      "source": "base=world.plot(figsize=(8,8))\ncities.plot(ax=base, markersize=5, color='r');",
      "execution_count": 3,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<Figure size 576x576 with 1 Axes>",
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAD6CAYAAABj0nRSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXd8XWX9x9/nnLtncrN30qTN6k66Wyh7g2jZylAERXErID/050IFRRHFnyhDmYICIqNsKN1tOtMmHdl7J3fPc35/3PTSkNG0TUfKeb9evOi995zzPLnjfJ/nOz5fQVEUVFRUVFRUVE5uxBM9ARUVFRUVFZVDoxpsFRUVFRWVSYBqsFVUVFRUVCYBqsFWUVFRUVGZBKgGW0VFRUVFZRKgGmwVFRUVFZVJgGqwVVRUVFRUJgGqwVZRUVFRUZkEqAZbRUVFRUVlEqAabBUVFRUVlUmA5kRP4GASExOV3NzcEz0NFRUVFRWV40ZFRUW3oihJhzrupDLYubm5bN68+URPQ0VFRUVF5bghCELDeI5TXeIqKioqKiqTANVgq6ioqKioTAJUg62ioqKiojIJUA22ioqKiorKJEA12CoqKioqKpMA1WCrqKioqKhMAlSDraKioqKiMgk4qeqwVVQ+SURWCIQjhGUFWVYQRQGrXoM3GMEdCOMLRtBqRHSSiE4joh/8TxCE4za/tgEfsgySJCAJAoFwhHU1PTT2egmGZYIRmWBYBkASBTSigCSKaCThoMfR/ydY9GTGG8mKN5EeZ0SnUdfUKioqUVSDrXLCiMgKHU4/m+p7aer1YjfpKE238eS6BrY39dPlCuAKhIedJ4kCEVkZ89o6adB4ayVsBg02o5Zsh4nPzEnnzKKUcc/RF4ywr9OFw6wj3W5EFAWq2508vrqe6nYnezvc+EKRw/7bD6AdNNpaUUSSPjbekiCg1Yik2Q0sm5rEhTPSyEs0H/E4Kioqkx/VYKscN17f2cZfP6ql0xnAGwzT7wuhjG13R+RQxhrArJcoTbczL9dBdoKRnAQzUxLN/PnDGp7d2ESH04/LH8blD+MJhAlFZA5c1aSTKM+Jp90ZYG+HKzaeQSuSFW/CoJXocQcY8IWO2FibdRK5iWaCYZlAWCYQjmDQSqTbjaTFGYgz6mjs9dDjCXL+9FQ0osDamm56PUH6PEF6PSH6vEH6vUH0Ggm7SYvNoOHimenkqoZdReWURFCO5I55jCgvL1dUadLJj6IovFvVyXt7OvlwTxeBcIREi56r5mVRmGJhW9MA25v7qW534Q9F0BxwDwsC/lDU1e30D99ZHwpJFFiQ56Aw1Uppuh2LQaK518fOlgEqWwbodI68Yz+ZsRo0BEJRt/on0YgCc7LjKEy1UphipTDVRmGqFbtRewJmOpxwRKbXE8QdCJMRbyQYlqnp8pBg1pFs06PXSBM+pqIoOP1hOpx+9na48AUjpMcZ2dLQR0a8kbNLUrAZTo73Z7z4QxG2NPaxdn8Pla0DdDgDuPwhZmfFsbQgkQtnpk26v0llKIIgVCiKUn7I41SDrTLR7Gju54tPbKLbHRz1GK0kMDMzjm+cOZUn1tbhDoTRaUSsei2VrQM09/kOOY5WEsiIMxJv1jEzw87Ny6aQ5TARjsi8uKWF7c397GgeYGfLwET+eScUs06iNMPO3RcWk5dkPmE36oYeDzVdbhp7vDgsemZnxtHY6+WjfV0oKJh1GvZ0uAmGZd6p6kASBQQgfJB3JCPOyJeX5XHtgpwJj9WHIjKv7mjF7Q9TluMgP9l8TBYIx4OmXi9bGvu45+XKEReyJp3E5XMy+M4500iw6E/ADFWOFtVgqxwRzX1ewhGFzHgjGmnoTbSqzcnLW1vwBMOk2Y3kJJjITTBTmm5DEAT2d7oHdzQG4kw69nW6WLu/h1+vrCYQHr5DzEswsWxaEiVpNv6xroHdbc5Dzq8o1covLp+O3aglxWbAOmiwBrwhmvq8NPd5aez10tTro6nPS2XLwJgLh8nGhTNSuX/FLMz6ExvNWlvTzW1Pb6HfGxr1GEGAwhQrn5mTzrklqei1Er5gBINWxKTTYNJJGLST04ieCDqcftbs72ZH8wCt/T46XAG6XQEMWhGrQcuDV8/msdV17OlwkWIzMCcrjrIcB6XpNkTx+CRhqhwZx81gC4JQCPzzoKemAD8C4oAvA12Dz/9QUZTXx7qWarBPHP5QhJW72tjeOIAkCZxTksKCvIQhxyiKwu42JzVdHryBMNXtLvZ2uJibHc93zpnGW7s7+N3bexFFuHFxHhfMSMWkkdjU0EdttxunLxorNukkilOtDPhDbGnoZ2+nm1V7u0aZWRS7UUtZTjyzs+K4en4WyVYDnkCYH/1nFx/s6aTHc+oY5bH491cXU5YTf6KnAUQT8l7e1sKLW5rZ1erEGxwaz//ikjzuuKAQrSjy5w9rqGjoY3q6jbOKUyhNtw1bEKocOe0Dfn69shqXP4TdqMNu1BJn0pJk1XNVeZZqsE9yTsgOWxAECWgBFgA3AW5FUX4z3vNVg31sUBSF/Z1u3trdwdbGPgBc/jDXLsjmstkZALgDYbY19tPtDjAlycy0FOsR73421PZQ0diHgEB5Tjzz8hxDXh/whajv9vCjV3axvamfOJMWWVZGdPel2Q2cPz2VFWWZlKbbRxwvGJZ5c1c7Owbj4k29XnrcwUkXrz4UGlHgoplp/PDCYlJshhM9nRiKovD0hkYeem8fHc4AVr2GV7+xlJyEaPJbOCKzq9VJS7+PJKueolRrzDMyWQlFZAQ46RYdrf0+Xtrawu42J3vaXdiNWq5flMPc7HiyHKYTPT2VUThRBvtc4MeKoiwRBOF/UQ32CUVRFN6p6uSh9/axo3mAFJuespx4pmfYyYgzYjdo2dbcH639jYu6uA+UDv34lV2srenhB+cVck5JtAzq4NpmdyDMW7va6fUE2drYjy8UwaiVuOvCIvZ3utnS0MeAL4TLH2ZHywC+YISMeCNP3DSPqjYnq/f1EAhHYseYdBIWfdRN6vSHaR/w0+MJkJ9kYW5OPIumJIx5w+n1BHl1Rytv7+5gd6sT7WBdtk4johEFREFAVhQCYZl+b5C+MVy5JyPz8xzcetoUlhcmI52kuyVFUWh3+jFqJeJMuhM9nSNGURSa+3zs73RHv5+BMG5/mKY+L9sa+2l3+kkw6/hcWSZfOT3/uM3LF4zg8ofwh2S0GoFkq4Hqdieb6/vo9QQRBHhkVe0wT8cBLpieSkOPFwUQAJ1GpDjNxpzsOM4oTCbJenzi37Ks0OHyRzUUpGjCaYJZ/6nWHDhRBvsxYIuiKH8cNNg3Ak5gM/BdRVH6xjpfNdgTj6Io9HqCWAyaWNJNKCLzo//s4tmNjUOO1WlEchwmzihKxqSTeHJdA05/CKNWwh+Sef2bSylItgJRg/3kuga6XAEeW1MHRGOWr92+jFS7gdd2ttHc5+WSmekYtCJnP7AKAKNWYl6eg8IUC0athMWgIRRRaOzx0uMJ4guFicgKRq3EjAw7NyzOnfBEmgM35K1N/TyyqobKlkPHzk8G4kxanrl5ISXpthM9lVOKPk+QioY+NjX0UtkyQGWLkwFfCIdZx/QMO/lJZvKTLExJNJObaCbVZjhmLmZlcFG5v9PN+toe9rS78ATDuAMRtjT04T7Ia6TTiDFBnqPljMIkHr9p/oRcaywGfCHO+90q2p3+Ic9LokBWvJHcRDOXzU7n8jmZvLK9FQFIsOhIsRlItRlOeO7GseK4G2xBEHRAK1CqKEqHIAgpQDegAD8D0hRF+eII590C3AKQnZ1d1tDQMCHz+TQTCEfodgfxBsJ4ghHCEZmMeCPJVkNsd6YoCk5fGI0koNOIvLS1hTX7u/EGI0xLsTA12UqiRY9JL2HWaYg3aUkewQ0bDMvUdrsJhGQcZh1ZDhP7Oly8v6eTbneQnAQT1y3I4f09nextd9HS76NtwE+fJ4g3GImKhIgCFr0mtsMe8IUQBJiSZOHzC3LITjh2rrwBb4h3qzv4xWtVJ3UcXBRg4ZQE7r9iFhlxxhM9nVOGhh4PNz2+idpuDwB5iWbOLU3h3JIUZmfFH1dvxup93Xzn+W10ugLHdBxBgIV5CczLczA7y86szLjjml3e6fLzZmU7/d4Q2QkmzDoNsqIgK9H70rJpSVj0GjyBMJUtA9R2e3D5QxSm2lhakHjSepiOhhNhsC8DvqYoyrkjvJYLvKooyvSxrqHusCeGcETmhy/t5PnNzcNeEwTQSiLTUix8dk4mn1946JIaRVH4aF837kCYGRn2Ia7pzfW9fLi3i6x4ExFFQRTgqnnZrKxs4/8+rKV9wI8kCph0ErOy4vifi4qJM+lo7fexu9VJu9PP7Kw4StNttA742dfhorXfz8Wz0thQ20t9tweTXiLBrGdJQcIxi3029Hi44bGN1Pd4j8n1j5bynHgeunYOaXbVWE8EgXCEu1+q5F8V0d+ISSdxx/lFfGFhzjFP0Hp5awv7O924/CE0gy5hfzBCtyfIysr2cQkDHQ0aUSAjPiomlJ9kxukLc9OSXPZ1uuh2BdFKAma9BqtBQ3mug8RPGPOVle0EwhHiTTo0ooBJr2FGhv2wDamiKKyr6WFNTTehiEJ5TjxnFiWfdHkBx4PxGuyJ9C9cAzx70ATSFEVpG3x4OVA5gWOpjMFrO9t4aWvLiK8Vp9qYnmEDBN6t6uCh9/Zx/vS0qMHs91GeG8/UZCuvbG9laUEie9pd/GVVDdkOE3ajjtlZcUB0Z/2vimZ2tvTz/Obm2E3m+kU51Hd7eHlrK9ua+oFoKdKcrHiunJeFzaDh56/u5tE1dShKdAHx2ytmcd+be4Zkij/w9l7uPL+QdqcfXzCMLyTzwd5OblqcS2HqxLuEcxLMvHjbEr71z22HzFg/HkiigM2gYenUJO65uJhk68mTZDbZ2VDbw09f3c2u1mgo5LzSFH50SekReS6eXN/A1sY+kix6km0GLpmZRrLNwO5WJ2a9FEu8O5hHV9edUG2AsKzQ0OOloccb+67/e8vwxT1AToKJbIcJvUbCoBUxaqWY9+xgEi067r6omMvnZI57Hj2eIPU9HuxGLXqNhCcQpqrNRZJVT5xJq5b8jcCEGGxBEEzAOcCtBz19nyAIs4m6xOs/8ZrKMaKxx8sDb+8lFBm6Sk+zG7h/xUxW7evmkVW1Q177ZCz7AA++u4+fXFpKbbeHmi4PWkngtjOiSTY6jcjywiTCssyCPAdra3oA+Me6BhxmHd84qwCdRmRuThzXL8yN7VraB/z8bXVdbAxFge88v33Y2N3uAE+sqyfepKOm003rQDTm9fqONhbnJ3JFeSZnFY9fE3w8OAez108GrAYN83IdTEu2EJUcUZkI3tjZxv1v7aG2K/o5W/QaHr6u7LB3h+GIzFPrG/jf/+6OPZdg1rGkIAFXIMxja+pIsuqx6DWsr+2hyxUgGJFJHsyS393mPOY76YnggGE/FN3uIHVdQ387VW1OchPMGHVSrAmORa9BURR8oQgvbG7m1yurR72mQSsSZ9QRZ9LiMOv46vJ8lk1NOuq/aTJzSgunvLWrnUdW1bJ0aiI3Lc7Dbpo4d2qPO0B9jxdvMMzrO9vpcPopSLZwRVkmA74QFoOGomOwExwv7QN+nlxfT68nSHGajfIcB8VpVrpcAf6yqpY1+7up7fKMKHk5FqdNS+Lnl00fFlfe0+6itd9HYaqVUETm0j+uYcAXzcSemmzhoWvnxN6Px9fU8ddVtTEjfCToJJH8ZAstfV7Kcx185fR8ClOsR/UZH0hGa3f6+XBPF+tqe6hoGDNP8piQajNw8cw0ntnYiDcY4dJZ6fzhmjnHfR7HiqZeL6v3d6OVoklT7QM+JFGkPDdaZ38sE4sGfCH2tLtYva+LJ9c34AtFmJZi5YZFuVw2O31c7tiKhl6+8/z2YYZseoaNv10/j4fe28fTGxopy4mndTBn49PCxTPTOLc0Fbc/zA9f2olOI5JqM9DS7yMiK6TaDBi0IvU9XvQacURBpbGYkmhmeWEypxcmYdZJeIMRvMEwnkCEiKwQZ9KS5TBRnDbx916nP8Rv39zDDYtzmZJkmdBrq0pnE0wwLPPilmbe39PJvk53bIU+GqIAuQlmEi16XIEwiRYdUxLNpNqNWPQS8WYdFr2GTleA7MEv2Hg1oCOywu5WJ/u7XKRYDVgMGn739l6umZ/NOSUpdLkDoECyzYBrMMv74BtRjzvAutoedjYPMOALoZEEOpwBNtb1xozsoShItrC0IJFLZ6czNzsq5FHR0IdmsE3k9Y9tHJLElRFn5PVvLsNu1BKRFTbU9tDU56V9IEBDr4eaTjfOwWYcLn+IQFhGECDOqKUsx8H62p4hGbKjkWTVc8nMdL5/XiFG3eG71CpbBrj4odVA1F1v0kp4Q5EjalJyJGhEgUtmpTM1xYLLHybZquezczNPGn3ww0FRFJoGtdz3drgQBOhyBXhhc3NsoZibYMJh1tHtDtLY62VxfgK/v2o2Rp103Gq1ZVkhJMtDpEsD4QhaURwxnt3a7+Os3344YuOX3181m8JUK5c/vAZ/aGIyuFUOn99cMYsVZeN3z6+v7SEiKyRa9CRYdBi0Ua+AKHBcShRVg03UsB1tRmFEVmjo8fDnD2p4oWLkOM9EcdrURHq9QXISzCwtSGTZ1ETsRi2vbG/lvaqompfVoGFny8CokpBFqVbqezzMyYpHFGHN/h40osDcnHgW5DkoSLaQn2TBatDw2Oo6fKEIDT1RreJPutEh6paammwlwaLDG4iwv8tNryeIXiPy08tKWTQlkSyHkZe3tfCbN6MqZ5GIwm+vnE1Tr5efvrobdyCMw6wjN8HEN8+eRpJFj92kHRIznHr364QiCla9hvxkC1eUZXDN/KEJQDVdbm56fBONvWO76EQBbjktnzsvKDrsz8ATCPPajmhJWkm6jSlJFs793arDvs7RMCPDzplFyVwwI5XCFOtx6+09UYQjMq9XtsdK5opSrVj0Gna3DVVDW5DnYENdLwB5iSZshmjc0heKsKN5gJI0GxdMTyU9zkiCRUea3cjUZMtxUe360/v7+eN7+4k3aUmxG5iWbKU8N5oUZTFoeHZDI89sbGRvh3vIec/fuojtTf38bXUtHc5jm+2tMjpJVj1l2fF4gmFa+32EZQWNKJBiMxBv0uEOhNGIAl9cmsfi/AS++/x2Xhwl78dh1lGQbKEo1crywiSWFiRNeM24arCB5zc18Y/19ZxbksoF01OZmmId97mNPV5ufaqCqnHoW08U83MdbKzvPW7jGbTRL92d5xcxNyeefR1uzHoNNoMGq0GLWS/xxNp6drc66fUEKUi2cNsZBWTEGXD5w2Q7TEN27m/v7uDDvZ1MSbTw2bkZ9HqCnPf7VUMWAkWpVvZ0uNBKImvuOJMkq57Xd7Zx29Nbhszty8vyuPuikiHP+YJh3t7dSTASoa7bw8rKdmpG8HScXZzCxTPTWFKQeMRiELtaB3h2YyPvVXUelet+NOxGLVaDJtZnOyPeSOHgDWGyJpi5A2Ge39TEo6trcZh1GHUaQGFjXR/xJi3TUqw09XoIRhQMGonm/o8bvMzNjmNny8CIi8aDSbbqObMombOKU1hakDjEi1Lb5eY/21pJsxuYnmFnesZQZbzWfh8b6nrYUNvL9uYBvnL6FEw6DbtbnURkmZpuDxX1fVw2O50uV2DEG7goQHmug/NKU5mVaefL/9g8RIQnyarnmZsXsLKynd++vfcI30mV40m2w0Rzn5fxphT89+tLmZE5surikaIabKIG+wf/3hF7PCvTzoryLC6fk4FlnHGy/Z0ufvXGHt6p6piweY3G8TbYEO3+VJJuI9lmIBSW8YUiuPxhulwBvrAoh+1N/bxR2T7sPJ1GZG52HGl2I50uP8GwTEufL2bcFk1JYF1tz6jjigL8z0UlKMCvV1YPE4A4rzSFv3xh6Pf3Lx/W8KuV1Vw9L5tffnYGsqxwy5Obeaeqc9RxbAYNC6ck8KNLSsiMH189d0u/j0sfWn1M6rIdZh2/+Mx0zilJOaXKV17Z3sr/vLST5MF4pW8UtS27UTtq2KUo1cL+Ts+Qjl5jYdRK3HNxCdcuyAaisfGzHviQVJuBW0+fwlXlWexsGeDxNfVUNPTR0n/oDnBHy9XzsvjpZdP5w7v7+OP7+4/5eCrHnxNpsE9N2ZhR2N48wPbmAWo63aysbMdiiO4mL52VztXzs4eVEXgCYTpdAc4rTeG7507j6Q0NPLV+5IzqCeEEeD49wQib6kdOrPrVG6NncAbDMutrR19cjGWsAWQFfvpqNMM2zW7AqI0KpuQkmLhgehqXzEofds6Xl03hltOmxFzEL1Q08dG+7mHHCQIkWfT4ghGc/jBv7e5g9f5uStNtXDornS8syh1zbsmDZSUTabDtRi3nlqTwnXOnjbuWOiIrdLkChCJyrPZdlhUEISoT2zbgY2fzAAatxNKCxBPS4CEiK9y3spq/rKolM95IlyswqrGGaGx4NOxGHWH5YxezKBD9XWok9nZEG80cLCpi1EkoRFXyOl1+pmfYOW1qEmtruqlqc/LDl3ayZn/PcTHUOo3I/StmYjNq+e4L2/nv9tZjPqbKp49T2mAbdBJ/unYu971ZjSQK9LiDDPhCPLG2PnqAM5oM9UJFM6IocP3gjfzFLc08tqaO3a1OZCVaE5uXaCYiK2gl4ZBuuyPmJPJ2HC+SrHruurCI3AQzMzLsY8ZrDxikQDjCvg43d/x754jHzcyM45+3LMQXjHDfm9U8t6kJbzBCstXAhTPSDjknjShwwfQ0/vxhzRGV3jjMOkrTbUxLsVKUaiXLYaIsJx7tYe6oH3x3Hy9tbaa9z8sZDoGsolxer2zHH4qQajfGwjVWg4bXbl92TBXhRqLHHeBb/9zGR/u6yXGY8ATDo+6eRQGuLM9iVlYcNqOW13e08drOtiHHbKjrZVqKJRYXlpVoyeHtZxTw1M0LAOj3Bqnt9pBk0dPY6+WRVbXc/VJU4sGi18QSE4/pwnoEgmGZ7zy/fVKUaqlMXk5pgz0/10GSVc9FM6M36Yis8OuV1ayr6YkJF3z4/eXDXJOXzc7AH5J5dHUtDT1ejFqJpl4vCWYdC/Kirt5j8sOcZMlFR8uBeN8B0ZR4k45LZqVxVnEKc7PjY4kdsqxw0xObWFfbgywrhGWFBPPomZvbm/o58zcfsKI8i6+eXsC3z55GbbeHhVMSRj3nYARB4HvnFWLSS9y3cs9h/U3zcuN57MZ5E5LhfPOyPHLjDeRfdQkl9buoyCjmsWvuRRHEIXFTTyDMP9bVc/dFxcctQa2ioZevPb2Vdqcfh0lHr2fs7mh3XlDELadFa/hru9xsqhvunXGYdTT3Dd0NKwoxD1Bzn5efvbqbOdnxLM5PYE+7iw8PErkZTxXBsUQ11qcuDrMOnRQtPUyxHz8Z109ySsewx6K2y00gLJOfZKHfG0SvkUas4VUUBUEQ8Ieiutd9niCX/HH1MckAnZ/nYOMIN7JTidJ0GxfPTMdu1HLp7HSaer188YlNtA340UkiV87L5IM9XeQmmDmrOJnrF+UiiQJNvVG3p9WgxaLXkGzVs715gFd3tPLilpYhO7uDvSAmncTKb552RLvPum4PF//hIzxjuHg/yU8uLeWGxbmHPdZohFrbkLKzECMRwqLEkq//nQ5jHFOSzMzLcTAvz8HCKY5xx+ePlsYeL79/dy8vb21BVmBOVhwaSRg1rGLQinx+QQ5fWZ5PnyfI79/Zx+uVbaM6k0b6DUiiwIwMO0sLEnlxS/MxSQJUURkLi17Db6+cxXmlqcfk+mrS2TgJhCNsru+jtd+HPxThsjkZ2A7aHXW6/Dz8fg02g4b/7mijxx0YsW/zRHAqG2yzTqI03c5vr5w1RItclhUGfCFe2d7KxTPT6POG6HT5yXWYMegkHGPspA/w0tZmnl7fyJbGPmQlKqd4bkkKPZ4gG+t6+caZU7lyXtYRzXtfh4vbn91KdbtrzOMKki3cfmYBl8xMn9hYsqLA8uWwdi0sXkzkvfcJRGRMuuPnHOv1BHmnqoM3K9v5cG9XLCks3qTFHQiPGCJKMOu4YXEu1y3IJsGi56Wtzdzxr52HFOrJiDOSajNQ0Xj8BWtUVMbCqtfwyPXlLMofn6fucFCTzsaJXiOxpCBxxNf2drj46lMVI5YOHQtOVYf4koIE7l8xi/QRtJpFUSB+8ObuCYR5esN+zihMJi3OQCii8JP/7uLuC4t5eVsr/1hXT16imWyHCVmJJmRdUZ7F5XMyuXxOVGFuXU0PVW1O6ro9LC1I5IErZ3M0i9KpKVZe/toSbnmyYkyN8esX5XDZ7IwjHmdUBAHefx+6uiA5GUkQMB3H7PL736zm/z6sHdHdKwqj53M8cn05ZTnxsccf7Okal6qeJxgmJKuCIyoTh04j8sdr5vDmro5RNdNHIio1m8jSqYnkJ5lpHwjESmFPFJ96gz0WO5oHDinSMRaiAGU58aO6Cz8NnFmUzP99vmxcQgNmvYYfX1Iae6zTCHztjAI0kogkRj+PHc1DmyY8v7mZ06YlcfuZBRi1EueVpnD+9KFuq6ON6xq0Er9ZMZOvP7N11LK7g70GE44oQsrE6qaPl5e3to5orAVFRujsYF5JHpsa+oe8luUwMvMTZS9lOfH8Z1tr7NwE7wDdprhY3oYAlOfGU93uGvYZq6gcimVTE7myPItsh4n0OCNf+vsmKlsGOKckhVtOy8dq0PD6J5IcRyIjzsjNy/I4f3oqKdZj1/f8SPnUu8RHIhSReWtXBxaDhrU13fx9bf1hywzmJJi4YVEu971ZHTv3irJMfnB+EZvre3mnqpOKhl7qe7yYBjVxZ2baY8pq7sD446YnK1a9htV3njkhsppdrgBLf/3emNrDogA19144zEDXdXvISxzeNelwURQlllhV3+3h1yurqWjoY0FeAk/cNG/SKZKNh2seWT+sRE9QZJ599oeUtVSxd8oMLv7sT1GEoQuy0/Id3Ls0lcyiXBAEqtudPPx+Df/d1syzz9xFeWs1ddNm8dJvn8Rk0NLhDPD0hoZxi1eoqEA0tnz3RcVcPS9ryO+vsceLIECfN8gf39vP21Udsbx5CkyOAAAgAElEQVQJg1YkHFGYn+dgSUEi71V3MuAL8b1zCzm7+MS091Rd4keBVhIpy4mn2x3grguK+dKSPJz+MAO+IJ/787pDnv/98wq5aUku97+5h+I0GxdOT6M8N578ZAs2g5YLZqRxwWB5kSwriKJAryfIjuZ+djQP8NLWFkrS9Wyq66Uk3YZRK9E24KOlf3Il2xSmWidMA7vLFcCok8Y02LIC+zvdQxTtnt/UxB0v7uDnn5nOdQtyjmoOgiDE8htmZsbx9M0Lj+p6k4HCVOswgz1V8FPeUoVGjjCtdmd0t2z+2P0tKDK3//wWMlqrYfFieP99ilJtPHj1bL5ZambKfbsQgILqLRQoHmRbKtXtLlRbrWI1aEiy6LEYNHiDEVz+EN5ghKUFiczOiqOh18szGz4u2bt6XtYwY33gOgdKOhUFbl6ax5lFySRY9MSbtBh0Uuy3fNvyfPwh+Yh6DxxvVIM9Cql2A6n2qERkss1Asi3areVbZ09l2dREtjT0U9fjIdGi57mNjTFBB0kUyHaYMOmGundH44DLxWHWsbwwmeWFyXx1eT4vbWlBrxFZs78bWYmuChfkOdjZ3I93kjQV2NPu4qbHN7KiLCtWWnckKIrCwx/sH1U//WBue3oLl81OZ0VZFv/e0swDb+9FUeDulyoREGKqWJ9WKlsGqG53YdFLnFeaekivwGfnZvD27g5a+n3oNCI3Ls7l9jPyCa9aCBvWU5FRHHVtH8QtxVbKW6sRwuFoslxXF6SkIAgCoiChEHWBK8C9b1STPyMc0xRX+fRRlhPPPReXUJRqPWQP7AFfiAV5DuxGLWl2I2lxhmHf4Y/2dfHd57fH7sk3L83jzguKRt05C4IwKYw1qC7xo+aDPZ3c+PgmMuKMnD89ldJ0G5vq+8iIM/C1MwqO2k0aCEcIhmUCYZlnNzTyRmU7ezucHGZXuhNKslXP+99bflRtExVF4U/v7+c3bx2dPvP9K2ZyRfmRZYxPdlr7fZz3+1V4AmG+dfY00uOMnFeacsiacVmOth1NizOglUSaer1IKPxr5VYe2N4/TD9g1feWk/25C2OZ7XzwAf6wzId7uzg934EmKRHJ7cKrN3HuPS+RmWhVDfankASzjjsvKOJzczMnJFb84/9UUt3uGvJdkkSBuy4o4vI5GSRYTlz99KFQXeLHmIYeD4+squXNXR1cMz+LO88vxm7S8o919WTGG7lmfvaExDT1Ggm9RsIK3Hp6Pq5AGJNOoqKhb9K4EDtdAT7357UEIzImnUR5joMzipJZWpA47m5qghBNQHtqfSPtziMPDdz9UiVnFaeMq1zsVGPV3i5cgyWJD7y9lylJZi6fc+jMdlEUyE4wsbN5gJ+9tpvtTf28evtSbl6xkP+2fkRfQ0ssgWxaioWsBNOQzHYEgW//cxtvVLZzmi3CYx4PAqAL+gm0d9JvGv+NdKSENZXJhSDAtfOz+cF5RUfVv/4Asqzwnee38fK24XKwEVnh569VsXBKwkltsMeLarAPg253gHerOtjX4ebpDY0sm5rIe987fUjd9vWH0Kk+GnQakR9eWMyf3t9PXbeHgmTLpNmZHFzHXNni5Im19UzPsHHT4jwWjFP4Y2VlOx2uo4zjC/Dw+/u5aWnekPaenwZWlGXy4Lv7aBsUHrl4RhpOX4j4cS5eVu/vZmNdL4UpVpr7fGyo6ebxf9xByq4t7Jkyg5p/vkJRelx0oSoIwzLbcxNMNAG78qZTWr+L2pxiNCkp2AwaFuQ5cPlD9HpCoy7IDk52q8go5ppB1TeVyUNJmo1fXD6dOdnxhz54nGxt6hvRWEM08fWei0smJOn0ZEB1iR8CRVFYV9vDazva8ATCnFWcwvLCJCx6zQnLCvYGw7yyrZX/bGth3RgNOCYT5TnxpNoNmHQSC/IS+Nxg8/lAOMKG2l5eqGie0IYKRq3E1fOzKE6zsWxq4rgbckxG1uzvZn1NN5fOziAsK1z+8JpY5cLywiQeu2HeuFySe9pd3P7sFq6Zn82Kskz+8Mwa7rrlHMRIGEWjQWhuhpQUgmGZTpefdLsRbyjCO7s7YoutrY39iHKYF56+k1lte6nMKeXLF32PLrMjtmPOTzKPqH2Q6Olj3cM3opUjhESJRbc9MSTZ7Xhh1kmkxRlxmLV4AhEMWoked4D6niMvAT3VMWolvndeITcsypnwLOxnNzZy14sj9xWYn+fgn7csPOkrOFSX+ATR5Q5g0Wv44YXFRxWDnSgqGvpw+kJcPT+bYERmU33fuNsRnsxsbvi4Vl0ShZjB7nIF+PEru6jrnljxGl8owuNr6oFoaciaO86cEPfcyURLv497X6vizV3tlKSYaa6u44Hbz2P3T87nvepObn2qgg/2dHHO7z7k2S8vJNk2dh/uaSkW/CGZB97ey75ON3Nn5lM7dSZT9m4nPKeMf9X6eG/lJtbW9OANRihItpBiMxAIRRCFaFOV8pw43I2tzGrfh0aRmVm/k3UP38TmzJLYjtlm0GDUScO6fnWb4qjIKI7tsD+Z7DbRpNj0pNoM6DQioiAgKwoNPV46XQH2d7qHHDsjw8a83HhEQaCyZQBPMEJeopkkq56tjX3HrmHQJMEXivDrldWsr+3hvs/NZFerk8rWAS6cnkZ2gon2AT/uQJiCZMthX3te7vBFmyQK/O2GchbnJ5z0xvpwmLAdtiAI9YALiABhRVHKBUFwAP8EcoF64EpFUUZVETkZd9gnG69sb+WFzU08+aVo96IDSW+nElkOI+99d3msu9VfV9Xyi9erjumYNoOGuy4s5pr5p04W+dbGPi5/eG3MlTyvtQppyRJ+9YM/4wnJPLm+IXbsleWZ3Ldi1pDze5w+Vn6wkw1uDd5QhL0d7mFCQrHdcvs+No/ipj447mzUadBK8Mhj36eseTeSIiPCkB2zVS8xLdXK7lYXvlBk1Gsd6xj2gjzHEYWcStNteALh2I47Iy4qwNHUe+zbfB4rpiZbcJh1yIP2QkCg0+U/aq+C1aDhD9fM4V8VzaTaDNxzcclhX0NRFOb94l263dGs8Iw4I2cWJfOzz0w/qrkdT8a7w57oANAZiqLMPmjgO4F3FUWZCrw7+FjlKLh0VjpfOT2ffR3RmPCSgkTuWzGTzPhTx6Xb1OvjkVW1sceFqdYxjp4YnP7wiB2kJjPuQBhBgATvAOUtVUiRCMratTTtqR9irAVF5r0PdzLnJ2+yuzXaspNwmL6587ny8sVce+cN1LQ7R1T9c/hczGzfh0aOUNZSRYJ3qErZgcXCuodv5Lln7yLVokVW4Jpr7mXRbU+wMXM6IVEasmM+0Ac8L9FEftLQ2KMiiFE3+DE21gXJFna1jl9xTVBkEj19oCjsanUOMWQt/X6CIXnMDnMnMxpRQKcR2VDXy6b6PjbV97GxPir6ND/PcVTXdvnDvLCpidd2tLFpFBXBQyEIAqdNi8pL5yWaWXPnmZPKWB8Ox9rHexmwfPDffwc+AO44xmOe8hysfa6VRK4sz+Kjfd3DWhNOZu5/cw81nW5uWpLHg+/uO2bjiAIUpdpYlJ9A1im06IGoq//+FbOYlWFDs2MJrF2Lt2wB+vQ0zP0deIKRIYlcu3OnU/w/FfQ4fUQWLyG/pjIqGdpShau5DUaIFx9wU5e3VLErfSrdxqGSpAneAcpaqtAOGvRwRwelhXm09PvQJFr41ff/RHLARZ8ljlkRBUlRaNnfSGPQDoP1sYkWHd3u4FG9F3EmLdNSrEQiCqII/pBMdbtzVFe1SSeRGW+kut094usHM55kuA5XgLxEM/5QBItBM2Hd/rSSQHGqjWBExm7UEgjL1Ha5J7RB0dQUC639I99btjT0UpBsGRYiGC9GrcQ3zppKTZeHHncwJiR1uFwyK50dzQPct2LmEc1jsjCRBlsB3hIEQQH+oijKI0CKoihtAIqitAmCkDyB46kM0tTrpSDJzFXlWdT1eNhU3ztq+8LJxItbW3hxa8tRXUMrCUiiQDiiDIn1iwLcvGwK3zhrKnvaXXzxiU08ftO8o53yScWc7PiPs3EHy6xWdURY91oVDouOs7PjSfMPML+1ClGOMLNxF7c8sBJ/MMLju7fHxE3qMgqGGeIDJFr1PHjHw/zwvluZ3rSH1176EV++8T66vCFCEWVY3LlFZ8MRigxfXPb0j2j4fEHwBSOU5cRT2dKPVhRxj7PdqUaMfvazMuPY2dI/rBOeWScxI8OKRhRp7vfiD8kkWXTEmXSEIzKBcf6GPrko+aTy2wHquj04TDo6nAGK06zIMnhDYbSiSO0oORpWvYapKRa0kognEMbpDw/xdKTaDexoGeoJKMuOZ3e7E18wgkErEm/S4fKHj6hfeKJFR1Ovd1Sp5LB8dH3AS9NtFKXZuHJeFj97dTcf7O3kzKLD181fPi2JJfmJ4+pZMJmZSIO9RFGU1kGj/LYgCNXjOUkQhFuAWwCys0+d+OHxJCPOSG6imQ11vWxr7OfO84tYvb+bj/Z1n+ipnTCyHSb+/Pm5lKTZCIRlXtjcRERRmJ0ZR7xZR5JVj0mnwR+K8L0XtmPQijy3sZFpKVYCocgpUbM5BFFETkomJdDP2jvPRFGi9dWVzf1EFi6G9evYM2UG73RFSPAOsCWzmLnNVQR0BvKa9vLccz8ccec4JcnCvsoaipr3olFkptXswFpTTWpmOkJGKns73Vx37b2kBVx0Ge1MS7ayfZTmHmMZvorBpERZkpmbHYdWEmkf8NMwRnOeudnx1HV7qGobwDeCOqAnGGFL49DGJb2ew9/JH04yXK83ev2qtqHtWsuy45EkgX5vkL0dbrIc0TajO5r7h82xNN2KTiOhk0QGfMPnW9HYh0aEFKueDlcgVsY3M9NOa79viLfiQMa73aBhX5ebwhQrRm20t0EwIhMMy4dsLVvX7WF+Xjw97iANPd7DSoLNHmyaExxUgvrl69WcNjXpsDPJBUFApzl1kstG45iUdQmC8L+AG/gysHxwd50GfKAoSuFo56lJZ0eHoii8W9XJ79/di1mn4etnFPC31XX4gsemf/eh8IYiuP1hOp3+4yanmmY38IvLp9PrCfHajlY6XQFmZcXxs0tLaerz0eMJxto+ugNhfvCv7by+sz12viBE3XRvfHMZOQmnRu3mJ6lo6GNHcz8Os473qjt5ZWszCd4Beow2nn3u7qjhSS/ix+fcyqtPfAutIhMWJa6+53k2+4cvZE4rSOC7v/wKpXU7CeiNmPweFGBTRgnfv+KHuOIScQcjLJySMPYiUlF47tm7Yobv6mt+OWasekaGjZ0tzhFfk0SB9DjDcUv0mohkOK0kMDc7HgTYMMHlmgfm57Y5MBm0xBm1BCPyME+HTiOSZtPTcITvW5rdgN2oPaSRP8Dvr5rNZ+Zk8LVntpBiNXBOSQr5SeZDViycahzXsi5BEMyAqCiKa/Df5wI/BV4BbgB+Nfj//0zEeCojIwgCZ5ekcGZRMl/6+ya2NfeT5TDy1PrGQ598jMlJMBFv0kUVrjQi/nAEvUaipc9HyyjxscNlSpKZq+dl8a3ntg2J4f3o4hIkSSQ30UzuQQIKO5r7eXNXBxB1kcsKKEpU5/qWf1Sw8lvLTqmSkANsqOvhyXUNsZ0Xg4lciZ6+j3e4rdX0mOKoyCyhrKWK7ZnFtPf7SEuwEOrspNsUh0YSsRo0bGnq5zMrfsbU7kZef/wbCETfw3ktu3n/DzewJbOYG77wK/zBCAvyHChKtO/1gTLJ1j4vaTY9XbXNXHP1L0jwOcc0fAatyNRkKy7/6NryOkkk0aLHE4gc0a75cIklwx0FEVlhQ10vohAtVfIGI+xpdx112eZIoYbR3pPCFCuhiExugokkq56aTk/MKzAe2gb8iEI07i0NNsvpcgeQRGFYnPusouRYK1y9RuSa+VlDGveoDGeiXOIpwEuDNzcN8IyiKCsFQdgEPC8IwpeARuCKCRpPZQxEUWBGhp3fvrWX0nTbiZ4OAA09XhpGKQEpTrOilcRx9UEebSeTl2jmrKJk3tzVztQUK1sOkm5t7vOR3uuN9axWFAV3IMzi/ET2/fwCwrKCVhJYX9vL/k4Xna4AL21tISIraKRTz2DftryAr56ezxuV7Xz3+e2x0qlhrl1zPNdccy+LzSG+/dj/8v5DN+DT6DGH/OzKm8HPvvtHWgb89HlDCECfwUJ1ZhElTbtjY0lyhNnNVeTjY2erOGKb2plpVr73q69S1lIVKw0bzVifPi2JwhQrK3e1j9mr3heKsLWxH6NWItWmp90ZoCDZQpJFT1Ofl05ngGDkxAry6zQiMzLsaAaTrA6UkMkKbKqPhgDKcuJj4YAjZbwxdoCdB8XD2wb8JFr1ZOqMNB/GovqTXQXn5zqG9ZE/uziZh68ri8WcvYEI9/ynkr9/cT56zeRoxHEimBCDrShKLTBrhOd7gLMmYgyVw2N2djSOtqt1ZJfhyURVmwtRiKqd1XaNvqIfKxu3rttDRUNfLN6nlYRYBvCjq+to6PVg1Go4f3oKz29uRiMKfOecaYiigG7whrkoP4FF+QlEZIVbTptyQvriHi8EQeDCGWnEmbR8/m8bon2oBYFrrrl3yIJIQUCr0zK7aTcaOYIm6EUASuorqauqp9scz7REI7/987cprd2BAOzNKeEbV9zNL57/JbObq6jLLabLYMc/SqZ36/5GygbbdZa3VLH51ln8ty3CtqZ+Xq9sx27U8viN8yhIjiZfXfan1WMa64PxhSJcuyCbK8uzmJZiiXlMvvTEJt6t7pyYN/MImZFuP6QxlidAFOlwBWdmZNjocgVodwZomYDKk9aBoddIsxv4yWXThySIXTAjlfQ4I/6QrBrsMTjx0l0qx4Q40+Sq+ZSVqNpZmt1AUap1xBjYwTuF8pYq8hQvfeZ4NKLIlCTzkFX8gjwHRp0Gm0HL1sY+/vDufix6DY+sqmHZ1CS+ujx/VHe3JAqH7GB1qjAv1zGkicxIrt0P+gR25ZRSWl+JV2vAGPJTkVFMj9HGN0qtLC1IoOQHlTFRh4KmPZgNWu697n+45+//y4y63TzyxPe57HM/G5K0FvOWGO3szZ9BYc1OlMWLScjL4oY88K+q5fWd7Qz4Qry+s41zS1L415ZmKkeJW3+S2Vlx/O6q2eQ4TLFSoVd3tNLQ42XfQe5Zu1FDbqIZvSQhKwo9nuCEK+sd4ED73QSzblyhIHcwzKxMO/2+EL3uIK4jyPQeaSF2AIdZh8sfwqCVKEmzMeALUdniPOrGQoUpFix6LZIkDMnOn55h49Eb5pHyiRi1rCjMzY4fdzOgTyuqwT5FmYiV8YmgbcBP+ihNObpNcezKKWV6wy42ZxRTK5hhsEd2l/vjutaynHiumpfNaVOTuPGJjbQO+LhpSS6Xz8lgerp9Qlr5nSr0uIOHLAEUiNYuA7RkT+WmC75Lh8HOs8/dzfwHqhEWL0JZshhl9WoANqUV8YMnfkp5y27EQSWzkrpKzk0SeXMw5+yAt6S8pYotmcX88NsP8cznpmLKTAdBQABuPW0KTl+IZVOTWDjFMZgJLCEKAv+qaMZ7iPKuH5xXOKTpw19X1fJ/H9bQ84n4bWGKbZjLtjTdhscfpn6cO/kh79cYCWhTky1Ut7vGvSDY1zE07js3Ow5vMDLupK4DjLQQ00oCiqIgywqhsDyhjYSCEYWKxqHeg7OLU/jDNbMx6YaaHac/xHee385rO9r47rmFJFv1aCQRu/HTsWg+HFSDfYqyu+3kd4WPhtM3NJlodmYceq2IAlx9zb1YnH0j3gzvuqCIy2ZnkGqPrt6jceoEHrxqDtkJh+4Gdiqyo7mfZzc2kWjRYdRJGDRRQZCwrCAKAhUNH9+kDzY0Zr2GaalWej1Bgi1tlNTvQlJkiut3sfJby7n4odWUNUcNcmTNGqTmZgLhCH94bz8NPV5+9/1L0SgyChAWRLanFtDW66UoMZHkoCuqKz7oBp/bXMVXZ8Zjyhra6lMQBH5wftGQ50rSbfz0sul8edkU7ltZTW23h35viA6nf1hy1jee28qmu8+OeVIOdCsbD7tanVj1mpiSl6woiAjUdLmHGfwhc1ZknhsM24wk1Vrd7qIkzcrutsMzuAfY0tiPAGTFG2k6ykV5tsOELxShzxsiEp7YeL5eI6LTiATDMqIQ7WJ4z8Ulw3bQTb1e3qvuRFHgnapO3qnqRCeJPHpjOcumJk3onE4F1G5dpyiX/nH1uJK4TjYEAUrTbFS2OtFJAkWpNtzBMLUjdG86mItmpPGn6+Yep1lODgLhCOf9btWYes8WncTUFAs6AX70+9sprNnJ3vyZFO7ehDQYS5QjMuKZZ8DatTQVz8G2fjUvrK/jxrNLkBSZiCDy8tr9rFiYB4DTF8SzaBmp2zeiAD6NHmM4gAC4dCaM4QAV6VFDXNZazf6CmRRXVxx2OVREVtjS2MetT1YQCkcoSrMhygr0dLHBrUGSRJ798sIh8pntA37++lEtj66ui1UGzM9zsLGuF71GZGamnZY+H60DI7f4zE0wxd7Pgxc4pRk2TDoNdmcv/3fXZ9DIEcKixFX3PI/TloBOI2LUSkQUhV0tAwSPshlImt1AlsOEQHQxEQzLaKXooral30f7J+YvCFEDbdZp0GoEtJLI1oY+JronSVlOHHFGLZfMyuCMwmRW7mpjSUHiiO1zg2GZJb9+j1BEJi/RzNbGfn5wfiHXL8rFchI0WjqeqN26PuUsyHNMSoOdYNZh0EpMS7Gwt8M9TMVpJAQBGnu9bG3sm9A+u5MdvUZiRoadJKseURDY1tRHIKwMMTTuYIStTQMkevqYVrMTjRyhsHYHUk93rJ+1KIkxpbR7XqvnQUHg5uQQiiIjAJIi88hfX+c/u8q5dn42F8xIw/bGyyiZmYiyjGnQWANYB5PWylurOf87/2BKsp1GjYVHen1DvCDbmvp5ZVsr+zpdRGSF4jQb1y7IJj/p425OkihQlh3P6dOS2FDXw+a6Hp59JlrHXVMwky/deB93/HsHf7h6NjPSbdDVRWpyMjMy7Dx6Yzn3vbEHg05EINqJrN8bimVnG7QjZ7R3u4PMyLBR2dwfc+nvyZ/B9279HZta+0CBzQcleFX4dOB3Y9RFP4seV/CojTVEQ0dtoywqAKan2zDqBhdcisLuVueoVRpHy4wMG7Ki0NLvR6+RePDqOVgGc0Cumje6GJZWEshNMHHp7Ay+sDCHmi73kM9XZTiqwT5Fmazt/LrdwXHpRmslgeI0G8unJXHtgpyYG1xlKDkJZv67o43iNCvBQWM9UqZ9tymOjtK5ZFRtRVy8GJI/oSIsitSKZlLsRpy+EPaSEgS7HWVggIjVRsrCuXy0r5s1+7s5syiZ25bnM3f+fJT162MSpwAuvQlTKEBb6VzK5pfw3t5uVsxIYUNdDz/5byW+kIysKGyo6R4SB15b08Ojq+soTrMxPzcelz8MAmxr7I/Jel6cJDC/eRciMG3fNrTdnfTHJXHjoxtY89bPMWxcD4sXc+6bb7O6ppfrFmbzs1d3Y9FrCIQiQ8R9rHotiRYRnTRUNtQdCNPhDLDIKsdc+oU1O9H0dZNgtpNs08cSvJw2Bw6Dhqx4E13uwDBp1GNJ5VFUh4wUg8+IM1KabuOt3R2x43IcRuxGXWxRrZUErizPihnrQ44jCGTEGXlqXQPXzc9WjfU4UA32Kcqp1L3rAAffSCx6LS/dtkTNKh0LWaZ2Vw0oCjaDFgVIHKUm95bT88n85Xro6ooa6xHc0xpR5J+bmpiRYefzC3OguxuhuhpNSQlPiiJPrW/gnv9U8sWleezv8pD1xruwbBnxu7ezPbWA2z57N1+/ajFWdz+fOW8uP5cV/vZRHX/9qBZfMBKrBx+rfK+qzUnVKPkZtb2+2E5eANxBmT5viERPH7oN6yASgbVr8bW28+C7DbGSxz7vcAGWA0mMRalW7EYtAwflVXS6AnQqElsH5Vv35s9An55GUjBMVZuLTIcZc6qd7g4XTl+I7Z7J4+ka6b3/1jlFfGX5FJ5a38g7VR1MTbZSkm7jte3NeJpawRTHivIsrl+Uw8zMw+tRvnp/N93uIFub+ijLObrOX58GVIN9inLdghzuf3MPgQlOJjlRHJxVvDd/Bp3/eUM11mMhyzgXLePBzRu4PqOYn3zrIWD0mtxlUxNBFGNu8JGIM2u5bkE2i/ITok9oNDD94zaGn1+Yw7raHt7Z3cmPLhnsa7x9Ez977EMe3ecBQcAZiPCFOZkAiILAxrqeYapbhyP0cTC7I0Z2TplJaf0uqqfMIH96PjkyOH1mWLwE1q2FA2VjiwXufmnnEE/USDvL6nYXVoOGudlxQzS9Z6bbop4DRcHtD9Hp9JFgje5C401aVu/vAaLNMSYTB7/381qreOrSPJYsmRpthhKO8MrXlzI9ww6yzPfuvYXknRXsSJuG+8b3D9tYuwNhQpGoaJHtU1JGebSoBvsUxaiT+NO1c/naM1tOCaN94EZywAVZ4lCN9Zh0dWHdshHhgNHzDQCaEWtyU20GCg+WhJTlEXfaNoOWX1w+I/p6RwckJ1PT7aF9wI8/FCEsK6TaDPzPRcUfX0sUuePG01n1h4/Y3+FkwZdWIDdXIS5ZjPT++yPKbh6u0EcMQeAn3/4jDXsaoufU92E1aPjK6VMQv/3+kL/ps3MyuOvFnWhEgRSbgXiDxI9/93VmNw/f1bv8YbY09pPjMJFiM7C300Xr/kZmN1ehUWTmtlRTJAV4qym6K7caNCOqe00GDn7vB2bPY255NDlQEgVuW14QOy7S0UnKzoro399azd6Lzvl/9s4zsK3ybMPXOUfDljzlvWcSr2w7IU6AAKHsvQK0kLYUWr7SUloKhQ76FSi0ZbaMQqEplL1bxlcIzbaznOE4cYbjvfeUrHXO90O2LNmyLSd2Eie6/iS2j6SjdZ73fcZ9899/f8m52TFePY4sKzzx5UG6TFYeu3q2T5LUS05dKScfrMiK4ntnpp0TT4gAACAASURBVJ7o05gUBi8kdklCXuKhxurDnchIhPx87JIjdVujHrogOmdyBYFl6eG8fEvukNmCLMM550B8PCxfDrJMRWsfh5t6kGWZHeWttOTlowz83Wiy8u6OGu55eydF2w7wq0syRwjSaFQiVy+IJ8zYxYLa/Yh2GxQUQEsLf7lxAVFBwwxFBhYVS+5cPaYBiCg4aquzogLJSw4lNykUPz+187mBI9i+uL6c3/x7P7UqPTQ3g6IgCnBGqoHUCL2jq/pIDfNrh0R5wowe0tgCKCjMiQsmMSOZA6mzsYkSxUnZbOwSEASYGx9MZnQQfmoRvWYaKna5vPa55z3Izz/cy+rNFeQ98jX/88ZOimsdWQYpOgry8lBwlB9Sq0p59LWN41p4Hm7qobrNyMqXt7B6U7mj2THKV7v2Ft9Y1ylOT7+V855YT3OPefyDT3IERSZVMbLmsesQRN9ac1xkGWtjE7awCPy1Kn745k52VXfyk/NnEqBVIQpw5owI/DUSXUYr7xXVcHhvGY/cdbHbWFLRgEPX7PhgGg5WsuX5VahkuyMlXlsLERHIy5cjFBYi5Oc7OsqHvT/9Vjv/2FzBTfffSmDRNsjPh3XrQBA40NhNZWsf7xfVIitwfW48Gw638tXeBmaIJm69chEVbUY+2lWHSnRYYIbqtNR3mejptzEnLohdNUMBNjMmcIR9paDIvPP2AyyoLeVA6mxuvulRuswumadhTmF/+sWLNHSZnWpk/mqJsACNm7uVawpdqxZZkGigu99Kl8lKbYeJyEAtXSYLZtvJc409Ws7NiOTuFTOYFR04JB1qt9O5cDEBe3ezY8Bd7c3vnUF+erjH+6hpN3Lek+tRFAWbze4scYlLlyKuG/mZOZ3wjXX5ACDQT82rq/K46eUtbg5W0xFFEKnXBGO2K/idvt9t7xFF1LExqAFkmevi1ejUBlLCdahEkZlRAWw83MJ7RbUUVXU4asmKwlXDx5IGNrgmi41WXQg74jLJqy9FGuwmb25GLCwE29DOeXgt3E8tccfydGwb1/Plpn34x8UQ32YkOUxHRnQQGdFBXJgzlE69MCuKX//xB2i3b0X5cgl9q//JS+tNtBsdn+GGLscCVKMS3YI1QH1nPzOiAtxUwsKMXcyvHSiplO9F3d4GrnXx4aWCqk6Wz4pAoxKICPSjpLZzhBXl8Oe3taIN1wx/c8+g4YiGA409HpvbTnZEAR67eg7XLIwf2TMiSVjXb+SMX37gLK+4SiI3dvXz9YEmKgY0FErqu5y+1+EuJS6l0PNnxsdIfAH7NCAnLpifXTCL59aW0dQ9fXfaF+VEsyo/GT/1NEw1nkhkGdvZy1laUIA2LpNrXeqzGdEBHGh0kb8cU3daC0If37z59zxzbhyXrJjn+HtkpGPHXOBo6hqrXKFSq1hx9hyK67roM9tG1XPvqalHt20Lgt2OsGkTATNSeD1+Fpfe8BiKOPT+Z0YHsmdAb2Bwx6sJiqZ1WEbJm7q4q3ynWhLYVt6G0SpT0Tpyfnl4N/Vj9z7H7roeBEUmUzITkBhLv01GJQo095gJ9FNjs8v0mMeWUz3ZCA/QEhPiN2qDZ69VJjwtkVtmx3Dx7GjSIwNRFIUNh1u5/4NievttpEbqsdgUShu6Meg1nJcRiZ8qkY7NuUTsLXJkZXwlLq/wpcRPIxRFYUt5O7//onRaiarkJoVy5zlpnJvhW4EfDXuLDpK5KBuVbMcqSiy5c7UzMA2qfI1HgEaid0C7WyOJPL1yHhfPjhlqUAsPh9bWUUfCJoyiOGroBQWOnTuOWe6dsRlc+80/kBgeQLhew66aTmTFPYAeSMnh8mFGIzC2xvdw0iMDRvg3uxLe10Hh86tQD5QOLr/vbUrtWmea15Ms6WimNic7ogCb7z+XmODxR0VNFjtPrTlEc3c/cxJCKDjcyq6aTh6/Zg6rCyp5/No5xA16BYzS3Hg64m1K3JdYPI0QBIElaWF8+IN88tPCCA/QkBKuR30Sez5fMjuGv92a6wvWR4FdVrjnnd1c9u5hdsRlYhWlEbvLhi4TKi+uAr0WO4uSHXOyFrvMD9/cyUMfFdOUm48cF4/l7OUQEeHxwttldLhtFZS1YrR4WZYRBEctvKaG/gULnc1NcxsPszwU9BqJoupOZwradRwpo6KEFWEiBp37qJBrs914qMYZGRzcsdtEiT2JWey3+7lNMgxvXJNEgaBpamYhK/DEl4e8Ovbprw/x0oZy1pQ2kxqu54r5cay7dzkrsqL4522Lh4I1DI0RnubBeiL4UuKnISpJ5Nb8ZO54vYjWXgup4XrCA7R091s51NTjVocL0akJ0Kro6be5iUccDx6/ZvaY0oY+xqaoqoMPd9V5THPrNBI5ccFYrDI17d6ZSGyrbGdxioGtFe3kxAazbtM+HtyzA1G2IxQW8tAr63joe+e63aalx8wlz250Nj1mxwZx6ZxY8tPCmJswzriWKEJkJO1WgRgcO2yjSkuDKoCIAC15ySoONvXQbbKNSHl/1aYQ6KcQpteMadYxGhWtfW4KbSMQBG679XHOCJRZ0+b42fUcDqTk0BkQ4rwDP5XIjmk45jXI+0W1LEo2cH1ewpjH3X9hBjurOogL8Wf5LF+ae7LxBezTlPMzo5gbH0xJfTfv/yCfHZXt3P56EcH+KpIMeueit6XXTG2HiRCdmrkJweypOT6p9LNmRviC9THyWXG98/+u9VlJFEgI1R2VVGZNh5Hs2CCHHKUq0C1Iri4z0vrmTvLTwjk3I5LoYD/MNrvbhMK++m721XezJDWM3TWdBPurWTYjnBWZUfT0W3l5Yzm9RgsrU/yJmZFIYHc7K/btciqY6SwmWqvqONDqeC5+apFFKQZ2V3eMWJT0mG3MDg86qoBttsmkRug9ms7MjQ/GalfY39DNmnaBIXm1oYVRSHIctpah2nefxc6CxBCnu9h0ZO3B5nEDtiAIXJQTw/lZvozYVOAL2Kcpoijw68uyuOaFQg439XB+VpSzxubJcKPTaKXT2MXc+GBnk8/RkhMXxHULE+g12/BTS9R2GFldUElKuJ6qNiN22eHR6+PY8OQrPicumKr2Pg42HV0ttb6zn+jBmW0PO/dPixv4tLgBQYALsqKpGsVP2mKTMVkdcqTvF9XyflGt4y6HS2OufITP0maTeXg3CrA/dTY9QQYGbab6rTLbKtpJMPijEkUqWofy+2F+EonWHhJyomjttU5YyCQ8QOsxYHcYrVSP8rwUQSQ1J825GHKtm++s7sRfI3HWjHD6bTJVrX00TaNxyyvnx41/EPCdZSlTfCanL76AfRqzMMnAI1fl8ODHJbz0rYU8clUO17xQOOZtGrv6mR0XjFYlUtbSy8yowFF3atctjOebZyQRolNT2WakvKWXD3fWsSIzilvzk92O/e6yFOJC/PnXnnp+/PZuCsvbaOzq95l6HCU17Ube3FYNONLQKlGgoavfK/ez8XDtGHbdubuiKPB/+xpHvQ/VKH0TrrXo3LpSwkzd/PG+5xGamlEEgbWdIp48IWvaTaglgcUpBtr7LNisNp59+adkVZQgLVsKa9dy51u7+Hzv6Oc0HD+VY/c+mBq3ywrN3f2jBmtwNJa5Buvhutz+ag2F5W1Y7Qr+aolFKQZ2VXdgs9m9aoiLCfZDr5UI8lO7SaUeDx7+bD8XZEcf18f04Y4vYJ/m3Lw4iRB/Dav+vp2P7sznjrNS+euG8lGPb+oxu+0KtlW0Mz8xhF0uF4+smCB+dN4MLswZ+nInhek5e2YE317qefU96Jd7xbw4/rq+nP0N3Ty3tozfXZnj8XgfnrHaZf6vpJF7399Dv1Ue8d5MBpOR+xhtOsW1DnwkfQ5t+hASwgN57fDAonCM/iSrXWHrQLAM7+sgo6IESbajFBQgtLTwwMWZbDzUSs84alyDFB5pY0FSKDuqOrB7kfGJD/V3S/970kS36bUsSAxlX303vWYb2yraSQzW8sLf72XWkb3O7nKAmWI/depAZ3f+4hQDRVUdNHQpSKLAgsQQuk1Wysbxip8MRAEuyvFOdtTH1HHMAVsQhATgNSAakIGXFEV5RhCEh4DvAS0Dhz6gKMrnx/p4PiYXk8XOP7dUUd1u5JmvD/Pby7M5c0YE33xlq9f3cbChm+QwHZVtRlLC9Xx4Z/4xzUoP7uDWHWpGlhVEn8mHV3yyu46fvbfHzdBC600L+ATxJngdNS5pdnNoOC+tnM+5syLoNFr515768W8/gGvgr54xl2RDGPHtbbx9+2Le3FbDG1urx70Pq+xYACQadGPuqhelGKhq7aOzz+IMrsPPwdmdb7SytaKdQK3E4hSDwxWsqcnpRZ5bV8rFEQJ3vfxr0suK2RGXya9//AyCqHIuRsDxHrT0mGnpNU9KmWo8frJiJnedN2NKH8PH+EzGDtsG/FRRlJ2CIAQCRYIgfDXwt6cURfnTJDyGjynCXyPx55vm81pBJa9sqiAyUMsPz53B49fM5uFPS73ajRitMmF6DZVtRpLCdMcsbPKLizO46eWt1LSbONDYg9Fio9toJszYxdyFs3xjIB440NjNLz8uwWpXyE0KxWS1oyiO1PS8hGCq200jXLGOFtsUe6070+wWO3vrujg/K4pHr57NntpOqtpGD5xuuAT+Nv8g/jN7ETOP7CU7L49HNm7kopwYPthZS5CfiuvzEthb28n9H5aMuBuDTkNUkHbUgB2oVdHc3e+5Fj2GCE2P2T4UgAU9h9JmM+vIXvYmZdNvV0gvK3YG8AS7kYLOoUt1kkGHJAlUtxmxyQpqaWqnczNjgvjBWSlOwxff9+/EcczvtKIoDYqi7Bz4fw9QCnjXneDjpCA8QMs935jF5z8+k79uKKfLZOWGvEQyY4O8vo+i6k4SDf74T4IKWX5aOHec5TAtMeg15CaGcO4PVjJnyWynIYWPIarbjFz250309NtICdchiaDXqgjwU9FnsbG7pgurTSY3aXyLSm/oNR+/LudXN1VQ32kiQKvif6/I8dpS1bXZK8zUTerhYrDZUAoLYdkylqUZeOq6OfwqL4w1+xq5Yl4cl8yOISsmyDmDrddI9FpsbK/sGPVxesw2wgK0o/7dq9lvQeDSq/6XM+5czVXXPcLWPjXFiVnYRIkdcZl83YbTKxwgKtiP8pY+j05nk40kCjxyRRaqFee5GcL4ODFMqtKZIAjJwAYgB7gHWAV0Aztw7MJHfPIFQbgduB0gMTFxYVVV1aSdj4+Jk/vwGi6bG8NvLsvGapd59PNS/r650uvb335WKg9cnDn+geNgtctsLW9n2YxwaGpCjotDtLsYTvh0h528ta2aX3y4F3A4UG0p99wEmJccip9aoqy5l4au/qN+vHnxIeyuPba6+KLkULaNEQhdWZEZycu35CIIAt9dvZ2vDzSPebynTvP337iPBfUHHCVwSYKaGuw33ACbCziQNpvkPVvRa1XQ0kJ/aBiV7Uaq24yoVSIh/mpUoohOKxEd5MemslbufGOnW2kgOzaQffWTo2Jm0KsJ1aqw1tcTH6anNzgco02mrLkXrUrALuMM1hN5HY+GBy7O4PZZASjx8Qg2m+/7N0Ucd6UzQRACgA+AuxVF6QZeANKAeUAD8ISn2ymK8pKiKLmKouRGRERM1un4OEq++slZmCx2Xt1UgVoS+dUlWdxz/kyvbz9vPDEMb5Bl1K0tLEsPc/wcGUnznFwUlWpcrerTjQ2HWnjoX/vQqhxNSHvHqGX29NvYeLiV9j4Liwe6n4+G3bWdBPqpJm3HPh5rSpt5Z3sNAL+6NIuzZ459nRjR7GXq5tqbH2dnbAZ2QaQyYx6PfnEAZXMB0oC/+q9eXENv/pko8fH4nX8eGZEBfCM7mnNmRTI/MZTZ8cGkRQSg16q4IDua7y5LYVFKKMlhOpLDdNSMYQwyUXrNdhTgDx8+zj8euo7f//lH1Lb1khahZ258qNvOWlYcUwCTTZCfiievn8v3zkylL9jArvgsZEnyff9OMJMSsAVBUOMI1m8oivIhgKIoTYqi2BVFkYGXgUWT8Vg+ppZQvYZHr5pNcW0nfWYboijwo/NmcP9FGV7dPvgY5BcVRWFXZRuNC5cgx8XRvHAJzV1GEASidxQg1NY6LRl9OPjlxyWYbTI5cSE0dTvcoUZDN+DPbLbJbK1oJzVCT3KY7qgeVxIFRAHmJ4SwINGxSJuXEExuUiiJhvE1pydK5UDtOjlcz4vfXEhE4Ohp6MFmL1cpVkWUuPabf+DCe9/iu6v+yGtHTOwYkBbdEZfJhiNtaLdvRbDZUAYdx8bggYsz+d0Vs1FLIpVtRrpNk+eEZ7HJJCtG56JjVvlelgYphAdoR8yS76jqoKPPQkLoyNdcEmD+wHsS7O9du5IowNXz41jz07O5ekE8giBwuKWP6254mNbSI77v3wlmMrrEBeAVoFRRlCddfh+jKErDwI9XASM7OqYxVW19JIXpT/RpTAmiKPD0yvluv7vjrFTWH2yhsLxtzNsebcOZ0WLjd5+WkmLv4XslOxHsdgx7dnDubz8hZ+FMMqKDuHN5GirfxcLJ1vI2ajocgcxqkwkL0IzZLTy8OelISx8qURgYF2rH5kVpUi0JLEgMpaSuyy0VGxmopd8qc6DR8fhz44PpNds4MsrIkSBAosH7xcLnextQqwR+ev4s/DUS58yK4N0dtZ4PHqXZSxFEDqOHAfete+54khTFyNY+CZuMs6O7Kn0O6V7sImdFB3LbmSnc98Fer5+Ht/QFG9ibmMW8mlKMC/No9g+ibxSRlfqufnKTQqnpMCEJkJ8ezvbKdsw2mV01XQiKzLkGga+NeAy2wf5q7lyeRk5cMItTDKiGfU7mxAXzq8tyiJyRNOnP08fEOOYatiAIy4CNwF4cY10ADwA34kiHK0AlcIdLAPfIdHTrKq7tJC7EH4NeM6pV4KnC2gPNfHv19jGPuXJe7Ihg70q/1c7aA83srO7AYpNZkBTKFfPiUBQFu6w4Gn4GXJqU/HzK3vk326o6ePCjEvKSQ7l7xUzykg1opmBcabpx/wfF1HeaEAQBo8WOIDCm3GhecuioDVQJAw2Dh5pGd6iaHRdEU7fZbdbYlUGdcVeyY4Owy8oIl6qjrb2uueds0iMD+PPXh3niK+8MKcYiPEBDa6+je15QZNIw8Ze7LyAjJtir23caLaz6+3Z213SSFKbDbJVp7D76/oBrFsRz0+JE4kL8iQ7UoDQ3I0RFcfvrRXy5v8l53HDnMUFwWI2GBWjZVtFOxoDtqGs9v3LmXFo/+YKGXgv3f7iXVfnJnJFqYGl6OFqVz7L2ROJtDfuYd9iKomzCs5zBaTFzPSc+BItNZkdlB3MSgk/pD/6eMRqNBi8ga/ZL1LQbSRhl9/Ti+iM8veYw4EirXjAgriIIwpD61dq10NKCEBnJDEFgRnQQGdFBPPzZfm7+21YWJoVy46JErl0YP7lPcJpxyZwYvvXKNq+PN4+xha5pNyEIngOpXiORGRvEjnECbHFtJ9FBfm4Ba199N+DYjaolgZK6bq/P1xODc+XfPTOF/x5sPmZRmNTwAFp7HYuMGdFBPHjJGV4Ha4AQnYa3bz+DyrY+ZkYG8qtPSrya8faERhJZuSiBhS69AUK04/txYU60M2B7UlAz6P0I8Vez8XArAFXtRmZGBaDvaHWm1tPLipkRrCCnx7H+UAv3XTALaYpHwnxMLr53axLQqEQ6TVZWvTr27nO6syIzyuPY1uAFpPD5Vfxt9b385K2dHpWsFEVxu8DOigokPy185AN5sN2bGx/Mby/NZM3NGfz6kkxWZEbSabRw7zu7ePwf67jhxQLeKKygt6rWMXx8GpCfYiDK1On18+0bZ6ZeUWBbZQez4xxNTIFaiYVJIQT4qcYN1uBYELT1ed59H2zsoaSum9QIvaM5rv7oAvegR7VOo+L97+dz8eyJS2WqRIHZccEsTAplX/1QCWFlXuK4DW2e8FNLZEQHIYrCUY81rspPZv3Pl5M3YGE6nKsXxPP0DfOAkfKt54YJ9Fvt1Hf1Ex/ij6DIqFqasdtlmnUhlM+Yg6JSIeTn0xUYynf+sZ0vShopHGWawMfJi0+adJJYlGLgjFTPX7ZThZy4YNbdu5wHP9rLmtKh0ZrhXbmVByq59/1Arl0Yz/zEEA419lJc18n/lTSy8XArgiKTLBtZlOx9TayiuYcZKy/Hb/tWhPx8Dr/9L+q7+rn70TuIKtnJztgMBFHAr7YU46IzMH+5hrI2IzOjAoca4WTZIf4gCNPfh1eWkc47l82bNjvlLBVh7PW3t65Ve+u6CQ/QEKrTUFTl/Q420aBzNoeNRnlLH9mxQZhcFMEmwgc7azlrZgSSKCCJAnevmMkXJY1jrllmRAVg0GmQFQWTxWE4sneYpvr3zkxhReaxjyp5MlwZjwcuzuD2s9LGPe7yubG8X1TLpsOKs95+KG02X7cBgp2+NiPzY4P40/OO3feuuEye+MULPHbv87x6STJERdHS0kfhkTYunRPjGJn0korWPoL91ei10imdRTzZ8QXsSeJYuqOnE1FBfvz1W7nsqu5gw6EWXlxf7lGC8f2iWj7YWYteo6J3YGen00ickRTCr576IbOO7EXZkg+XrXPsqMehsayG1G1bEOx2KCgg1tqLbDYRu38Xgmwnr+GAo5Yn25F2bKWjroGqPjVheo3jvZFlR21840ZHoD7zTEfq3YvHPilpaYGCAlQuOtWeTDhc6TRaUYsCVi8EN1p7LYTqNBM6pVCdZtyADce2Tvq0uIFQnYb/vSIbQRCYGRXIT1bM5MmvDqGRBCzDVNgWpRhG1PVzk0NhoBkuOsiPW/KT+O6ylEkJRLnJ3o+6aSSR31yexc2LvVu4iqLAXeems6mslZtWPkx6Wy2hufPAZVEVYe4mt64UlWxnQV0pLRV1hKcm8o8jJlZFC6RHBrDnN9+YcHPod1dvp6rdyH/uPmvMSQQfU4svYPuYMJIokJtsIDfZwHW5Cfx9cyU/C36K/oZG965cBWewBsfFseFwNbMGdJOVLYWOwOOFCMOZy7Jh6VIoKID8fPQJscxKwDEXWlCAsGSJ43ELChDy84mblcy1rpFhIMA5T2xwdGe6CkBERmJZvASxsIDd8QM61V4QHqj1WjRlrJq3J0Zz4BqO6MUE+PCmKnDU0kN1Gv5ZWMEVMRK5izJAcIwdbi1vY19tJ0HdrfSHhhMeqCVMr2W7B0vNPTWdzE8I4cwZ4eQmGzjrKNLgo5ERHYRGJWLx4rX77EfLmBEVOKH712tVCIrMm2//kty6Uoq+yuShu/9MabNjAfJlq8IOl8VzWEo8u6o76DJZyUsxkB0bPOFgbZcVylsd97+/odsXsE8gvoDt45hIMOj49WVZ/PqyLLaWt/HBzlrWHmwhIzqQFZlR7Kru4JM99fipJSL1agjxY1d8JgvqSjEtXESD4k/5vkZkWSEnLnjUZjUEwdmM5qZn7Po7RRn590EiIx3BfeNGx886HYR7nxI8Icjy6M9HUTjw5Is88PE+9sn+zIgMRGGoxjsa4QEarwL2gsSQCdk3zokPHtEJ7glRYEzHLfDcVKUIIklhekrrO3nrrQeY/6dSGLDNRBS5bHY0d/3ue263GW23//QN87lkztQ4T2lUIrlJoRQc8Tz+6K+WuHJ+HDfkJUw4WIMjS7LAz0pefSnSQA073NSF81I+bKRthsmGJAq09Jj58du7uXvFDC6dEzuhx/x8bwOCInNBhMTZE0ij+5h8JlWa9FiZjmNdPsbnP/saWb3xCD9+9PuO2lpsBq/f/DM+tYcS1t/j3EVpVQK/v2oOV09V93dDg0MPWZYdqfC6Oog+Sf19ZRnOOceZUXBL38sy9uXLYXMBu6NncO3Nj6OIEsH+agK0KmJD/BAEgX6LnU6TxWGHqTjmK5u6+t1S4mpJIDMmiF6zjSA/NYIso+1sY5/Vjx4v68x6jYTFLru5hHki0E+FJAp0GsfWIg/v66Dw+VWoZTtWUWLJnatp1YeyOMXAkZIjbHl+FSrZjl2S6C+vQp8YxzufbufqK5aMuM0gOo3E0vRwLp8by4U50VNqmLG/vpvL/7LJo9b3FfNieWaMsUevUBTn6GNt5nx+cNsT7K3v9piVAJwWq4tSDOyp6WTTfeeOKTwznHe3VpF43aUsqj+AuDR/epeSTlKOuzSpDx+jcUF2ND9bEEruQGNaXu0+nvrDd9nz7E0UPncr7739CxbEBSGJ4jFrVI9JdLQj+IHjonfVVWA/uuanKWcwhW+zDaXvXf4mFhYiyXYW1B/g/TfuQ1BkukxWDHoN2ys72FbRTnFdFzVtfZhq6qlpN1LbYXIL1inheoL91RTXdiHLCnuq27nvj3fy+kPX8vLqexEU71LihgDvat0zIgPGDdbgWakMHM5yadmp7BkwxihNyeEHX9VQ025kaX6Wx9uE6TVcvSCO7Q+u4OVbcrlsbuyUu1tlxQZx2VzPu1hvnv+4DGabamspf+9T/DSS26TG22/9gnlxgeQlh7IoJRSbXSEvORS1KGC2yWwZR/xoONcmasmrK0W025A3b6Zif+WxPwcfR4UvJe7juLAwLxOWLXXIPtpsqBSZQIsRAZhfs5/qg5UYAwyex7wmC0UBq3Xo/1u2wLJlsHnzybdjGEzhD+6wXZW3IiMR8vJQCgsRgLn1B1kWaGdjr0hFax/RQVoau82jppZTw/VEBDoENlBkwo1dVCoK5xoEt3GhHLWZcjGAzJggWnr60WtV7G/oITbEj5ggf2RFxmJX8NdIxARoKC+tHLG7c0Xlra/5KEplVW1GKlr7uPb6R5x/86/s5DeflPDYtXO49wdPYapvRBsbw7dzosmKCeKq+XEjlLuOB7nJoXy0q27E7+s7J0lzfGD0cZHBTtun+8mUzG5p8tpD1SOaEAe134trO0ddUHhCiIqkLnsB8ft3UZ81n5WfHOHrGYkEaH3h43jje8V9HB8GdgVCczNcbAwcPwAAIABJREFUfz0UFqLodCjd3YiKzF8++QM33vQoGtXEW4h3VLaTFRuEn0pCHCsoNDXB1q3uv9u+/eRsPhutZj/4t40baZubh2HfLiQUfvHab7H+5C+YFQjQqGjrs5BkMzk7hl07yQP9VWytaB8R0L//7cedvswHU2ez1+oHgp0dVUMz2IPKYPWdQ3Vwjajw7w9+TVpZ8dgjZhNoD1cEEUt4BAxodM9LCGF3Tafzb4PByGS1s6+hm1+8t5sH88Ixh2WwPCPqhE9tnJkegUoURqTF506GOY4LfmqJzJggajQS9jOWIGzZQvWsuc4Mg2uafHBNOtFZcUEUOfTWJyCaSMhI4aOufraVt9NnsU0o8Ps4dk6ybYWPUxpRdKSl162D2lrE0lIESYUILKwvJdLYwXyNxSshEItNprXXzO8/L+WVTRWYrXYe/Hgvm8takWVlaOba9b4EYWTgW7r05HUf8iAg40SSCP3PpyiihADMPLKXsv0V7KruZGNZKxGBWqolPQdSc9zSxLlJoeypccwgD5+f13Z28Nu7/8wZd67m0Xuf9/i4rb2WER3QQT2dpJUVuy0MPFHTbsRf7d0lJzVcT5LBodWfEOpP8RilkuRQf+56+A4uuCiPK+6+mWDtUEDq6bdSVNXO6s0VXPHcZo+CPlNBYpiO285MHfH7RaMIoxwLMyMDSQrXo9mwHrGultSS7Zw5M8K5INvy/Co+fv9Btpe3oRIF5id6P3o2KBl8XnYMUkwMz68/QrC/mrhQP/7wnwNuFqM+ph7fDtvH8WcwECkKwtJ8lM0FlCRk8ur/PUnwC9+FcRpb3t5WzZ++PEhrr4W85FBCdRq+8fRGWnrMvLWthpvz4rn38R8QtHM7Sv4SrF99zUd7GlBsdlYGBCL0dCMEBUFpKcTETFsBFSk2BpYtRd5cwI6YWY7FiaKAIDh3wKu++TjazjYa/YIJ9lNjsQ3V7ONmJVGanENWZQlH0ueQlp1CQXkH6ENJGXYhHq2hCSAqPXHEHP5wArUqIgK0xAT5sXNgp6yWhFEb1cIDtNR0GAn2VxHsr3azrxx+Lu2Vdcyu2ocg21E2b+bzNbspVfRsq2hnZ3UHC5NC2VrRTlyI/3HV+7/znDT+vrnCbTxuzAzQUdJvtTE3PmToewX85rJsnni9zZlhya7cx9mhcPfN+ROywP1yfxPpkQGkRQRgsyu09ph5as0hlqWHc8dZaQMLoOn5/ZmO+AK2jxPHQNq3taKGNZsq+Ml3ViDKdpSCAoSBNHVHTz9SaytByXHOQPHPrVVOw4a6DhM3LkqkpddMy4ApxX/W7eWhom2Ish3b5gJuePhf7LH6EWXq5Ia+Xkdaqa8PJGnaBmtgKG3e0Ej8hVew5flVHEybw4N3PUNNl5m2PgutJhsZifFgttJtslLbYWJ+YghqSaS5u58rrv0dYcYuAhPjsLT3I+DoJpddNtGj1cIHEUWBJ3/xIqq2Vjb3eH5NZ0QFsLO6E4Pe0aCWlxxKfVc/Io65/so2I3nJofSZ7QRoJbZXtaMocOaMcKc+9mjnchgdxYlZzK3cC3Y7Yd+9leduGjrHwSXBN7KPb9kjyE/NeZmRfL63EYAfnpPO4hQDZpt9UtXCuvptXL3AfbIiPTKAF+65iMY3cgnbs4PKmXN55d5LJqQdXtnah82ukBbhmLtODNMRotNQUtfFmReGU99lwiYr+ITPjh++lLiPE4soEpGWxL23nA35+dhEieLEbN6oMPH45/upX7gEfXoyBzIWcrihi9v+scNpIKGRBCICtfx1fTmHXVymXLuMd8RlssfiGGFp8gtme5yjw9g2vJFruiKKiKJA/L4iVIpMZtlu6g5VkuYibhHor6Kus58es512o5Vd1Z1sq2jHoNc468G9Zjt1nSbSowKYFx9CUfVQ3Xp46tw15Z0Q6s/eum66zHYOCXq3YJ0aoWdRssEZrMHReDYjUs+hpl7qOkzUdJiobDOiVYlsr+xgf0M32yo7nJWMnn53/XOP5yII3H7Jz5BFCRHIrR86R40k0NLjyDZ8I+v4j/Bdl5sAOJzMLp4dw6ubK/jhm7smNTW//mALd7+zm/bh0rOCQNGrH/D6u5tIK9k+oWDd0GWipL5rhFb79bkJ/PLSTPqsdp75uox73y8e/848lad8HBW+HbaPkwNBQLV+HYdLyqmW/fl0Ww2dlTX8vKIEYcBp6FuvrKWwd6iZyGJX6DJZRwpkjNJl7Pr7lKwUsv+9jwcuzEDT0eZZnGS6IAhuF0MFAZUoMDchmJLaLqoHXp/hqWTX9GxLr5nIQC1qFCIHDUUGXg9P0rODDDZVHWjsIS85lE6jBZuskBkdRHNPP+XD/LCbe8yYbXaSw/XOWjp4VlVLCdfT2OXeVT3aubToDU6Fr51xmcTNSiJZkpAVhZ3VnWREB54Qrf9zZkXyzMp55CYbiAvSUlNawZo22FLezpK0sGO+f0VRuHZhPM+tLePfe+q5NT/Z7e+XzIuDeXETvt+IAK1HgZV/FFbyWXEDCgo17SZSI/Rj39FYegJTwVhiQ1Nxu+OMTzjFx0mJoih8uqeei390I1JhIW1zc1l43oMjvkyBWokZUYEoCjR293stuzkzKoDDjd1s+OJ3xJfuQsjPh6+/hrZpGLwVBc4+G6WggIbsBXz/23+k/kgNfcFhpEUGUDIgquGaSr7l5t8jqiT6rbIzkPfoA/no7QeYWXNwRLe3a7APD9SiVUlEBmnd3NeWpBoob+mjz2yjdxzRlWB/FVFBfmP6bwNkxQSxv8Hd2Wu0evrw37v6fz9743wuP5EdzQOBy75pM9vjMtnyt/e4+xsZk3b3L204wr/21PP6dxYTqp+YBvxwzDY7Pf02wgPcxVUau/r5ZHcdl8+LZdWr22nq6WdGZADvfT9/9DtranKIFdlsoFJBbe3UTWQc7eLgeC8qPOCtcIovYPs4uXFZ+V787CbnxdvTRdugU5MUrkcAOowWKlo9S1MOGkK4KmopkoQ9NxepqAjy8xGmm5rT4OsUHo7l7OWIhYXsiMvkrtv+hL+fGmNN/ZB6mCDy3R//lQ2aaAQUZyC3arT49ztm4+2SxG0Pf8TaTvfXYGZUAB19VjqMZlw3xRGBWkwWG71m74Vo/NUiWrU0Qkxk+Hs7UZlUcDf9mBMfzMd3Lp2Shi+vcQlcNlGifNcBZs5Jn7S7t9pl7n1vD9srO7jr3HRuyEuYeIPdwGfoke2t/Lu4kY33nTOqyMw97+xmV00nb9y2eGyHMhdVNvLzHRMiU7UYPtrFwfFcVIyCT+nMx6mBy2hT/0CH83BVp0FFrsH67M7qzjGbevrMNlLCdM70qk2U2Bk1A7bvQLDZkDdt5g+vb6DT6J0d5UnB4OvU2opm6xZUsp28+lKUlhZkZSiVbBNEzFp/Xn32+3z03oOE93U4FegGgzWAtGgRL9xzETNcauGCIhPR10FLTz92u0x4X4czFR8RoHUL1oLi/ndX1KKAn0okOVxPfIg/8aH+brcb/t5WtvaxaAIuWK7BWhTgocuzj1+wHq1eOyiEo1KhWraUmbPHt9Mcjcaufp766hDvbq+hYaBkoJZEBEHAZLVz/4d7eWVTxYTP2758Ofa4OM67cyVNXUaWPvZf3t1e4/HwJ2+Yx99uzR3fTtRFlW1KgzW4vcYjxIam4nYnAF8N28e0IWRADMNT49FwVacql7q2a4nXoNeg16roMlkI8FNz442PssDfSpFRzdtvO3aaexKyeH5/L//+yybeuyOf6GC/4/YcjxkXhTQpP58//c/5fFXaTLC/muifFqBqriJg/nyQ7cyr2c/qby9G2utwQRP0eujpgUWLYNMm/ESR312Zw68+LiEjUs+DT/wP4cVF7Ih1pHIX1h9wdmq39poJ1Er0mO3OoJtbV8ruhCz+dN8LNPRYMFrsJBj8KW/tw2yVKW1wmIWkReiZEx+MViVSd6DS7b1Nx0i/Vs+h5l5yk0I50tJLh8uO3F8tYrMrpETosdhkqtqNbnaaP/3GLBZMYO74mBgrtTqWEM4ECQ/QcKiph2e+PkxSmI73vr+EyEA/rpwfx8c7awg3dvHX9Uc8zoGPRk9NPbrNBU6ltLlaC0pIKNeOoes/2D0+Li7jZlPK0b7Gk/jeTDW+gO1jWqAoitMWcKwmqEGyY4OcCl3pEQF0m6wE+qsoa+5zXtAjA7X0mkXkiCio6XRrSKOqE0kQ+NYrW/jyJ2cf1/ndY2LYxWe5ILA8w+ViGZE9ZEman0/2gplDx4eHQ2ur20XrjNQwvrrnbMeu8ds7YeCCDqBSZOeCqVkQWZxiYGtFO2eH4Jz/nVuzn7L9FbTqQxEFR3PbcI64NKalJ8RwOG02M4/s5VDqbDoDDPjh0ODeUdVBsL+aRSkG+i12bLJMTbuRzJggt5T5YEp9aX4Wdy4/+p3shPGk/+4aqCYpcKkkkadXziPw4xLe3VHLNS8U8MqteeQlBvPJ+78is7KEvYnZ8MAur8o6VrvMXV/X8f24THLrStkRl0l3oIHPb19yYssIR8PRvsbHa1FxjEx5wBYE4ULgGUAC/qYoymNT/Zg+Ti0sNpm/rC0bsiwcrQvcBVdJyKZuhw52WfNQYAjRqWkemNsurnXMB4sCqIL96e53pHaDBowx9jd0kx0bPIXPcJIZ6+LjaTchCEPHj3Y7l517ZfpsWnutLKx3XzBtrWjnzBnhrDvUws74TBbUuv/dG1GsshYjt9z8GLS2OG7XZ2FxpMEpnNJlsrrtoOclhIwI1m+99QB5daUIe/IRblh3/HZMY+m/TzJalcTj18yhrtPE5rI2rn6+gA+uTiOnah+ibGd2VQmVG7aTfPaiUZ9/e5+F//33PnbVdFLVZmTDTY8yV2Nhl1lLtFWm12ybsHf2tOck7xaf0qYzQRAk4BBwPlALbAduVBRlv6fjfU1nPjyxZn8Tt702/uci2F9NUpgORVEI9lezqWzIlci1Y3iQnNggDjb1kBMXTIBGcs4EG/QaQvzVlLc6Avz5WVE8u3I+/prT7OI1iEtDm9LUxPUvbeGg3Y9E2Ui9NpBQvRaTxU5cqD99Zhv7G3rITQim8sDYZiCeCPJXEa7XUtHS41yQzYp2vE+eGP6+xpi62PzcLYh2+4lpIDrOF3yTxc7P3t/DZ8UNGHRq3njjfmaVFWPU+OFv6Udy8QwfZHd1B6WN3Rxs7GV1QSWSKGCXFbJjg9hXP9SR/4dr5nB9XoLHx1UUhZ4BS1aA94tquXh2NDrNNE7ansBucW+bzqb61V0ElCmKUj5wUm8DVwAeA7YPH8P5tLieF/57mBUGhTVtjHkR9FdLdBgt1LSb0GtE8pJDkRWHB/TwYA1woLGbQD+122gSOHYeriIU2yvbMdvsp2fAHnYRk2WZtwoKOZg2m+uvf5g+ow2b7KhDu77Gokoa0VfgDUkGPSW1HW4jaL//2XOjHi+4yGKmRwbw3I1nIu5eelx2uR45zqlVf43Ery/N4ou9DbQbrVx85W+Z1V7D53//MaJs95iaf+TzUgYVRQcXPEkGf440u4/Yfbm/kbNmRuCvlvjFR8XEBvs7NMslgd01nazKTyEoWo3VLvPz9/cgANdMlZf98WC8ksZJwFQH7DjAtc2wFlg8xY/p4xTBZLHzu09KeObln7KwrpT9yTn8+sfPoggCJfXdI1KsiWE6Z7q0zyJ7DNKu2GTcGphG4xtZUVS09hEXKhMZOI0a0CaDYRcxUVEQZDszj+zFv6uDPn0o3f02Grvd59/lozSFONDY7dZUmFtXSt3hatCHehzlUwaER+cnhvDadxYR6KeeNg1Ek0VUkB/XLIjnvaJaFEHkgMGh7Z5bX+rQFxi2aLHYZPbUuhu0VLW7C9TMiAzg5VtyEQSBv2+u4NYlyYTqNYiCQHV7H3eclUZyuEM0RS2J3LIkmaXpU2iNezw4jiWNo2Wq9/uevi1u32RBEG4XBGGHIAg7Wlpapvh0fEwn3tlejb252Xnxzqosoe5wNVq1RHZsMGrJ/eO1q7oDg27ybRXf3VHLVc8X8MCHe/nNJyX8bWM5tR2eZ7xPOYaNvFTNmufm/jVIgkHn/H90kB/V7RN/fTIidMT2d2NIjmN/cg42UaIsfQ6tupBRR/lsskKCwZ9Xb81zBGsY2+XsFOWxa+Zw9swIxw+CwPUrH2H9mp0oa9eOeB1WZI6/a8yKDUIQBKx2mQ931pEcrudIcy+bDreQEh7gDNaDXDk/jqggh9BKWXMPT3x5kPOeWMe3XtlK4ZE2Tw9x8nE8R9COkqneYdcCrkWQeKDe9QBFUV4CXgJHDXuKz8fHNGJ7VceIjnBTSBitvRYqWvuYlxDMbhd5S6tdwU8jgRe75qNhTWmz8/8Pf1bK0vQwnrtpASG6Y1OWOqkZ1qR2YG8D1778X+cud9DzeWhsTo3FJtM+wRl2UbbxzHN3kVZZyq6ELK664WEMph5adSHMiAoktLfd4yhfXYeRp2+Yf8zqXtMdSRT45SWZbDzsmLtXBJFVX1TzxcwkMmOC3I69/exU9tR2saa0yeN9zU8M4anr5wGOhsy9dV2c86d15MQF8+hVOaSEj5QjdXUAiw3xJzVCT0uPmSMtfUQEaJ0yrI1d/XxaXE9EoJYLsqNPvqa2k7xbfKoD9nZghiAIKUAdsBK4aYof08cpwoXZ0fRb7Nx446OEG7sIT0sg2q44x4B213SRExdEn9mGRpKQUSgbR+pyMtlc1sYjn5UiKw41rfy0MPw1EgFa1akVxF0uYhfMjuHLM3P4cGcds+OCMVpsBPurqW4zIso2zrF28EF/8ISadQRF5r037mdm/QEEYF7NfkewHqiBH27uBUXNwdTZZJTvde7uEw06/vGdRR4DyOnIjKhAvndWKn9dX+783ff/WcSq/GS+vTTF+TutSuKMVMOoATsuxN85zvXRrjoA4kP96em3ER+q83ibXrONipY+QnRqEgw6rprvqGV/uqeB0sYezDY7W8vb+d5rO5y68Y6gHUV+WjjnZkR6Fbw3l7WSExtM8BRk0qYDUy5NKgjCxcDTOMa6XlUU5ZHRjvV1iftwpaiqg1tf2Uqvxc7CxFA3B6nh+Ksl0iL0lNR3j3rM8cJPLXL7manceU76ybeDmATMNjs/fHMX3SYrWwcVxWQbu5+5iUCLkR6Njnk/fhNZ9G4/4CYRC+yMzeCab/5xREpSUGSSZSO1qgCsCvzykswJiYN45CQf45kodlnhB/8s4sv9Q8E40aBjw8/PGXFsv9XOlvI2FAXqu0x8UFTL4aZefnlpJjfkJQLwn32N/OSd3Tx1wzzueL2IV1flcq7LXP+a/U3UdZrITQ5lc1krVrtCRKCW63MTqGk3cuHTGwjRaVBJAl0m6wgZWnDoxdd3mbhkdgzfyI5mSWoYGpXnBZ8sK/xrTz3pkQHkxE2jUctxOFm6xFEU5XPg86l+HB+nFjXtRn789i5mRgfS3GMeM1jHhvgRH6rDYh3p+HQi6LfKPPtfx9z4y7fknnLpWq1K4i83zufGl7eQEq7HZLGR1FhPoMUhbRpoMZLeVsuhiGSv7m+w7JFXV8r++Flcc8NjHoOnIohUSAEkGXREBfpxwygjR15zEpg+TDaSKPCn6+fyo7d2se6goydoVnSgx2P91BLLZw01Vl06Jxa1JODnIut7QXY00cF+LE0P54LsKFYXVLEkNdw5MbEiayh4D9cqSDDo+M9PzsKg1/DCuiNsKW9jR1XHCNVWQXAI47yxtZo3tlaTHhnAS99aSKoHJTVRFNhX30WXyXJKBWxvmd6fTh+nLP4aibZeCzurO2kb7vPrwuIUA41d/WyraGd37cQMIqaaHVUdnPfkeu55Zzf/2lM//g2mEVq1xDMr5xMRoKGt18L+kHh6NDoUoEej41BYovd3NiCEc/ujH3PZysfHDZpVbUa+uTiBwK72Y/NY9jTGcwoQ5Kfm76vyePjKHAQB9BrJK0/qYH81Oo3KTd3MbLPTbbJhtys8d9MCogK1E+pPiA/VIQoCd6+YyXvfz2ftT5dz0+KxPxtlzb3c+cZOjBaHF3pzdz817UY+La7nubVlVLYZuWVJMgClDd1Y7SfHQv144HPr8nFSYrXLXPbnTRxo9CyYAaCWHE1PppNkZz0WkYFatj5w3vSROPWSe97ZxcGmHmx2kOxWUtvq+NQeelQ7VW9duQRF5uDmP6DZuuXYdsbH00nqBHGgsZs9Ve3MveVqZhwpxrroDPw2bQBRxGqXR3XjckVRlGP63P5zSxVL08OdvQaKonDdi4VO6eCcuCBK6kaWsvQaievzErj9rFRWF1RyoKGHq+bHceX8IX/vqrY+VhdU8uDFmai8eC4nKz63Lh/TGrUk8uGd+SyfFTHqMQsSQ6dFsAZo7jGP6/08Hblifjz76ns42NTD/tZ+PlXCmJ0wJJiSFRNEblIosSHjz6/vrulkthdpzjBjF1Jh4bHvjKfBGM+xkhEdRKy1l/SyYiS7HdXWLfz42f/wwzd3MuehL7n+xUIKjrSOeR+jBmsvdu0Al86JcWsMFATB7XsteJz+hT6LnYtnxxAd5McvLsrkH99Z5BasAZLC9Fw5L46WXjNby9sw2+xM2SbUy+c7lfgCto+TFp1Gxe+uyEE3isJYl2lqxremCv9TsAFtWaqBGUqf20WsubufBYkhLE4xcKipmx1VHXSbrKjGMZKQFbDaxvfTbtWFUJkxb3LsEE+Dme0zl2YjLVuKolLRvWARF5w7F51GIixAw7bKdr7/ehHfemUrv/+ilMauIQGcTqMF+4AATr/V8b50DJanBuv/8fEoy5c7fh6F4RMT2yraefbrMmZGBSCJAoPSHCpR4JYlSbx8Sy7fXpqMhMwfX1tP7Tgz/XMTQogJ9mdxahhWu8Kb26o50tSN0tg4ecHV5fkyzvOdSnwpcR8nPa9squB3n45Us00O01HXacJqP3k+w6MRF+LPpvvOObVS4rKMvPwc5M2b2TFgs6kIo+8BNCoRi83zhW5OfDCHm3oxWe1kxwahUYnsqekc1TAkPzmUN69KO2W6u6ecUbrhbXYZs02mtdfM5rI2lqaHkRCq4+HPSunpt3LNwngE4OPddWTHBhMeoOXCnGhayqowZKQh2e3IkgqxznvN9l6zDZtdJkSnYXdNJ09+eZCtFe3EBPux7t5znOdbOWcxcaW7OJw2h4jtm4kIHsd72+W52pYvRywoRMlfgrRu3bE3EzY1OYK1zTYlGvXepsR9AdvHSY/RYmPpY/8dISMqCJCbFMre2i5mRQeOkFtMDtPhr5GcvssnCo1KZPW388hPm+bSjcNpakKJj0ew2bCKEkvuXD2mfnh6ZABlzZ7LAp7G9rJjg9BrVGyrbPd4m0/+ZylzE0Zaq/qYPGo7jPzpPwe585x0ZkY5us1313Ry2+rtrP/st+iLtk5K/d9ql7HLQxa6wz9bK3/1Lr/93nnedYY3NSHHxSPabSgqFcJkBNcp7nfw1bB9nDLoNCpuOzMVQZEJ7+twprkUBbZXdtBvkx3iGgNEB/sxLyGEyjbjKNWx44dWJfK3W3JPvWANEBmJkJ+PLKlG9SV3JVSnRq+R8FePvOxIHtLlBxt72FPTQWSgdsTfVKLA82vLhuqVJ0F98VQkPlTHo1fPJiJg6D0ID9Dw5T1noy/YMGn1/55+m/tdDHy2UKlQlizh3m+dxZf7GmkaplnvkchIxKWO23bMy6NNNwnjXydJv4Nvh+1jWmDst1Camcuc6v0UjZJ+DdGpSY8IYFd1B4NZ8uQwHVXtxhN2HX/osixWuahMnXLIMpWllSx/bf+4FzFJALsCS1INGK2OcaEOo4Uek5UFSSPtT2dEBnC4uZflMyPos9joNdvQa1RY7TLlrX0YLXaOPHrxKTlPPd1RFIU3tlajVYlcsyDeOSo2Wsf57z8vZV5CCBfNjhn65bGI2kwzQZyTRjjlpGeavbGnK7quDubXlCIO05J2pdNopa7ThGtJu7LNyJy4YGyyQkVbHybL+E1Nk8W8hBBuPiPpuD3eCUEU+bTJ7tV3Z/B9sSuwZ0ADXhQcRhMmi51FKQan2xqAzWojvK+D4ho17aM0GPb0Wx3z2GPYIn5W3EB2bNAIwwofU0NJXRfv7qihvKWPTWWtPPbFAdIiA+g2WflGdjT3nD9zxG2+2t9EUVUHF+ZEDwX0Y9H1Psk1wY+W03sZepJ0/vnwgshIhKX52Dw4Rbmi145cgxbXdbG/oRuDTkNecihxIV42rxwD2bFBvHJrrldzrtOZjYdbeOKrQ14dmxEdSKLBnwMNQzO3sgIldd009ZjdjhUUmb+88jMKn1/FP17/udOdazhdJusIRzHXrnFFUXhnR43X5+jj2Oi32rnrrV28VljFpjLHuFhbn4VtFe2YrHaunBc74jZdJitV7UZ2VHVQ0dp3vE95WnF677CngWG5jwEEAWHtWv76bgF/3NU56o5OO4oGMUBdp4m6Tofvb1ZMEPsbJqY77smPeTSWpocTFjCy9nqq8df15V6XG5p7zLR7UK0TFBmlsZFt3Y7XVasSyfO3kXFkL5JsJ6OihCWBdgp6R763fWb7CEcx1/fmN//ax4ZDLcQGn2Y+5scBRVF4rbCKdQebuXvFTOYmhPDYFwdGDbo3Lkr0KDc62HAGDnVAWVFIj/Qsp3q6c2ov/8djjJW5j5MQUeSWKxe76RcPR6eRRjSneUKvndhM9Gh+zKMx2vjSqYTJYmdHlecObk/IHt6P4a/r4sQQZFlhU7fE9rhMrKLE/uQc+kM9N+2ZB+e2h81TK4rC3zaW8+bWagAaBuQtfUwOJoudG/66hd/8ax9rD7Zw89+2cu97e9hwaHQRm0UpBo+/12tUzjXWz98v5toXC2nrNXs8drJ4fUvVlN7/VHFK77C7+60E+Y1hwzbGytzHyUmgn5qXb8nl38UN/O7T/bQMS6VidwSAQf/s0WaDRUHAXy1htcvYRhv2dSHM2OXRj3k0PHU9n2qs6K+7AAAgAElEQVSsP9RM/wSU5kQP3y/X1zW3rhRtZxvzk8IprunixhsfJczYhRgVRYpq5AJr+awI5sS7l0Y6jRYKj7Tx8e46/rNvyLHq+oUJTsMKH8eGyWLnqTWH3Mbtes023iuqHfN2179YyOVzY7n3wlnEuMxUb61oc1tbdxqt1Hf2T2mGKismkD6zzWMJbSz6rXbssjLh200Wp/QOW+NN/fA0UDo61RAEgcvnxrL2Z8u594JZBPsPLcpCPQRWT2wdqKllxQZ59ZiDjlLWcWrog4zmkHQqUdthIjlMR6qXzVzxof4jFjKtuhB2J2RhEyV2xGWysRPKS8oRBMiKC6FVH0qQv5rtLsHBTy2yMi+BP984f8Rj3PdBMT94Y6dbsAbHDHj4aVCimGo+La7n7wUVvLShfPyDh2GTFT7cVcclz27i9cJKp3raZ8UNI459v6jmWE91TOYlhNJtNHs/CijLVO4r5++bKrxa4E8VvrEuH9Oe9j4LFz2zAbNNJlgr8fhzdw/tsFc+Qpipe9S6s0YSyIoNYneN58DuykRq2J/eteyUt//71546fvTWbgCSwnTIsoICzn8TDDpMFhsWm6NGGarXoNNItPZaiAjQ0mWy0N1vQ5BlOqvrafMP4q23H3S+d0/e/wLbqt3fl9vPSuXO5Wkj5C7BkR6f9cv/c/7s+n5tvO9cEgy6qXw5TgsufHoDB5t6JmVMcmFSKPMSQnh9S9WIEpJaEtj32wtH9cU+ZiYyCjigupZwYBfS0qVTMjboG+vycdpg0GtY+7Pl3PjSFtSS6EylDg8AntLjFruC1kO61ROKII6ZBh9kbkLIKR+sAc7NiGJWVCAHm3qoahtZH24Y0KXWqEQiA7XsrOpwpMUF2FffzYLEEI60DDQo6UMJ7+twy46Iba2AI3vipxb5xUWZ3JqfPOr5aFUSkYFamnvMztr4wrpSSpKyiX9059hPxjfeOS5f7mvkSEvvpGkaFFV1UFTl2efealdo6u6fukXW/7d351FyV2XCx7+31q6ll+p935LO1gkk6WyEfRFRUUDQAURgVJAZGZU5viMKOI7bqPMyM0dFERVGeZVlRFYdEUbDkgBJyL7TSTrpfd9rr7rvH1XddtL7Wl3Vz+ecOun+1a+q7k31r27d7Xkms+C4tZWSo3tQoVDMFycn9JD4iCQiUkKyW0xkOq3sr+8m32WnzeEiw9MzbHg8OclEVYmLDWXpbChNpyzTMWa+7alYmjN8JWwiclpNfOOaynHPMxoUdZ2R/fGBsB6M/X6irf+MLF7Dph1skS896Q4Lj92+YczGesD7K3OBM+fGzzl9ENU2RkYq2d45Jq0120928JXf7Z/TuP3X/Xgbv3jzJMHZyHc9mQXHQ6KuxXpx8sLqYUtEpISW7rDgC4YHtw4NNAADPew2exrrcpPZOSSiltNqwmycuR5VdrKVL71/6Yw933y3oSydJTnOMVOHjnaFdbkDGJRiWW5yJO+5UoOjI51OF9nRBW3Xri7gvEUZ45YlHNYcaIgMoQ997/3rN+EY60NWtneeIRTWdPT72Xa8jad31nKwoYcu99xnxmvr8/HNlw7x4t4G/vuu86Yd0+DX75yiMj+V1UVpk1twPI8WJy+s1mqkC1MkjIFVwJX50eHoaANw3t//Fzfe9K+g1LBYxH2+4BmL1qbr7y9ZRHbywtnzq5TinivOjFx19ra6kVaHD+jo9+PxB0lOivQdBqYd1hS7BofUn91dR58vOG5ZfvtuHbtPdw0UjJtu+g43PvA09q2vj/0hK9s7B+2s6eDyB7ew/tuv8oUn97C1uj0mjfVQe2q7eHjL8Wk/z0fOzefBPx3lye2nIzHoJ7PgeJ4sTp5Wg62U+jel1BGl1D6l1LNKqbTo8VKllEcptSd6e3hmijtNcmEmtLbo3k13NPzoxrJ01pSk4yorYmN5BpsXZVDX6Rn2uJyUJKpK0ihJn14EtDXFaVy+fOH1zK5amTsYwersfdUFyRayU8ZenX2qw4M/EOLiJZlUlbg4f1EGu4Zk7up0B/jfw81jPEPEo1tPnvG7VgY2nbcCNd4o2jxJ7BBLe2u7+Kff7uWGh9+iZoT1CLH22LYatlW3EZjG8HhykplHb19PtyfAywebZrB0c2e6Q+KvAF/RWgeVUt8DvgJ8OXrfca316mk+/8yaR0MbYubVtEU+aN5r6WVjWTrvRONSOy3GwWxeq4vSONjQfcZc3MB5FdmTn3tenO1kQ1k6WU4rN28sJidl4fSuByil2Lwok+f2NAzbr57t62F378j/JwOruHMWF9PU4+O1Y5F55tIM+7A82BPp5VXkRIfWh7hs2QS/lCdo7OmJOtzYw9M7x95HHUsd/X5u/vk7PHzLWq5amTf+A0ZhNhr47MWLZrBkc2taDbbW+k9Dfn0buGF6xZkDC/zCTFRaa2raIyuOA6HItqIBfUMSfuyp7WJpjhO71cT+um5CodDg1p/Gbi/rS11Ut/QNy709lMVo4AOrcvnIufkLskc9Ens0ctzZ6wY6nS7oGD6qMdATXxc978abvgPRFfw17W6K022cHvK4iQSquGJ5Ni/ubRj8Pd1h4dxCyZc9EVuOxsf04H+++h6rCtPmJB/AfDSTi84+BTw15PcypdRuoAe4X2v9xgy+lhBnaOrxDg6Fry91nZH16WxHowukilKt/OTR/8OyE/vZGd32taOmk9IM+6gNdkW2k4c+sZYlOYkfGGUyVp61bmDgS1CpUiQnmej1njkHneHuZl39YUzhEGvrDrG+9gDbC1eiVOQ+V54Td38nBUtK+NsLyvnIucOTRpxtTZGLZKuJXl8Qq8nAZy4sw5TgyVdmSrpz+L72+ehIUy/XPrSVp+7cNGJc8kQ3boOtlHoVyB3hrvu01s9Hz7kPCAK/jt7XCBRrrduVUlXAc0qpSq31sGwLSqk7gTsBiouLp1YLseCdbP1rwoGJRiLyNDSx9MR+TEO2fYWzs8lwWEacx8twWPjlpzaQv0C/3Y+lJMNOXmoSjd3eYfvVl+Yks/NUJzazgaJ0O6k2M0q72FdSyaqaAyjgqSe+Sq/FzqGsUtY1HMFrtWEP+FDnb0Z97i+RPJzjKM6ws+0rl/HnIy1cvCRrxOAqYmRXn5PHb9+ti4sY+K29Pu59Zj9P33VerIsy58ZtsLXWV4x1v1LqNuBq4HIdDZumtfYBvujP7yqljgNLgGFhzLTWjwCPQCTS2WQrIARAc+9fV39PdN9mmz2NQ6WVrKg5OLjtqyrTyd7akYM5bCxPl8Z6FEopLl6SxZM7hoeU7HD7WZ6XTJ83eMb2r+s/9i3W1x7gqSe+igKS/W6q6g9jQuPw9qNg0tuskpPMXLO6YGYqtYA8u6t+MGNWPDjYMH5kwkQ0rSFxpdRVRBaZXay1dg85ngV0aK1DSqlyoAKYfPBZISaoqTuyQrwi2znxnLpKcfdnHmSZyUenI40NRgMNnW6W5IycerPbE9vtLfPd1efkj9hgn2gd/f044Sqg12In2e8+o4ftsSThDPkjAStkN8es+9yli8dN3jGfhHXkepzJLZnxYLpz2D8CrMArKrLi+m2t9V3ARcA3lFJBIATcpbWeeB4+ISYhHNY8u7sOm9lItydAny80/oOiart91AK0d3FuUSpt/X7qurwjnltVPH5Y0oXsgopM/vF9S3izum1wDYF9lAxZg6FD6w6xL2cx93/wbg5nlA7OYYfTM9hx1xqMubHf+7oQlGTYuWBxJm9WjxERbh7xBEK8fKCJj68vinVR5tS0VmRorRdrrYu01qujt7uix5/RWldqrc/VWq/VWr84M8UVYri2fh/HmvtYkZ9Cy9npNidoXYmLfXXdo6aLvGZ1PndfVjGdYi4Id1+6GI8/SIHLxqqClFEjoGW4u6mqO4RZh1nbdIzvvPxjlmQ70cqArSifxz+7GWNerjTWc0Qpxb0fWBbrYkxKXtrC20IpSyhF3LOZI724qaagXlOURq83OGp4+dyUJL517crZyxyUQAwGxf0fWkF9p4f99T2jLgBss6exL28JGlDAqsb36KltwGRQPHb7+r9GqxNzZnleyoyG6Z1NTquJTeXjh6tNNPIJJOLermg4yqmGUOz3B3mvpZeqEhclZ2UHMhsV/3r9KpKTFtZc2XRsLM/gY1WFY5+kFDd84nvsyl82mAu7KSmVB65eweJs2TIXC0aD4kOrph6UZC7lpFinHVs8Hi2s5B8iIWUnW1E6TLipCZRjUsOoSSYD1S19hHUk3Z/RoAajpGUlW/nPv1nN+YszZ7H0ienLH1g27iImbTBywy3fj6RCdaTxzWtX8clNJXNUQjGSWzeX8tyehvFPjLKaDBiUoqrExSVLs1hb4iLVZqbHE+CJ7afZW9vN0ebe8Z9okq5YoAGLpMEWcS8cCg1Gzdo5St7r0TisJrxD0muGwpp3TnawNMfJ/VevkMZ6iurb+8ns76TNnjbmFyitDJCTyy9uWMVlyxbmh/B8MtGsw2uK07h+bSE3VBWSZB55YeGaYhdaa37y2nG+/8ejg8cdFiP9/okvDD3beeUZcR1edDqkwRZxb/v2o9wSjZo1EABlaOCOsSxKt6Fammm3pZDh6RlsYK6vKuQCaaynJhxm5Sev5a2t23h3yBeo7GQr+Wk2NBAIhil02biyMpcPrMydUOhRMfse+kv1sGPJSSaKXHbCWtPrDZKTYuVnt64jwzl2UheILGb7u4sX0dbr59GtJ6kqcfGRc/P55xcOTrhMAzHn2+xpJCeZefiWKlLtC3OKSq4SEdfCYc3jJzwsL1g+GJe6zT6x+NFKh/mXH3yepcf34bPaMHvc7C2p5I2fPs0dF5ajZIXy1LS2YnzrLYzhEOvrD/P5lalsPr+SdaXpGKe6MlDMiWtW5/NeSy+1HR6SrSZu3VzCnRctmtZ+Z6UUt20uob7LzUM3r+X2x3ZQ6LKNmDlv2GMHtv9Fr+13H3tmVhvrUFjzlyMtXLFifo72KD3RMZA5sG7dOr1z57BgaEKM6rVjrdz26HaUDrPc6OVQyDbhOezM/k7e+vHtmMNDhudMpkiaRUkQM3VawyWXRKKUbd68YFNWxit/MEy3J4DVbCBlhhdbdvT7cfuD/Mcr7/H8nvpxwwgPvUaDBiNdx06QuWh2Q1j//I0TbDvezi9uWzdnX9qVUu9qrdeNd97CW2YnEspTO04DUFmQxnuTXHA2kFkqaDASTE4Go1HypM8EyS8d1ywmA1nJ1hlvrCGSQa3QZefBj5/Lj25eO+75A9dowGCkfsUaMstnP1DKpy8oY1GWg23H2/FMY659NsiQuIhbW6vbePVQS+QXxRk5rickmlkq29vDT++5itW2oORJnymSxlaM430rcsh0Wmjr849+0pDsb1/79KWUzMG1qZTinvct4cZH3qaqxMU/f7iSgZHoWE+TSYMt4lZ1Sx/+aKIPu3lqf8qpDitf+OiFrC5deEEYhIglo0Hx+Kc38pMtx9ld2zk4b35lZS7P7IpsCbxieTa3bS4lJyWJiuy5S6dpt5iwGA08trWGQw09BEJhbqgq4uaNsc0oKQ22iFtro7G9k5NMNHSNv4AF4JObSih02ch0RlYsV5W4JIKZEDGyPC+FH9y0BoDaDjdhrSlOt/PJ80o42tTDx9cVxaRX+/t9jRyIZgR791QnG8vTed88WIgmDbaIW1uORobDF2c72R2NdjaeS5dlyX5fIeahoiFRBlcXpbG6aGK7PWZDYaqVy12a3zdrqkrS+fVnNsWsLENJgy3i1uvvtQJgHmer0IUVmeyr6ybNbiYnZeElDBAinmytbqPPF+ScwlT2nO6iPMvJ0ty5CVf74t4GClOtVN5yHT98exu35i/HsfX1OXntiZAGW8SlcFhzuDES8nC8IbPvXLeKQpct5gtGhBDjs5oM3PKLdwejrv39JYv4p6tmP5NYdUsfDzx/AEdnG6+/tQ1DOMSGhiMoyxiL4uaYTN6JuHSirY9LlmZx2bJsutxjX1C3P7adH/15eAQnIcT8s640nTVDhsMvXz772yx7vAG++NRuutwBfOlZBDadByYT6vz5tc1TGmwRl+wWE3ddvIjmHi9pdsuo55kMin/96Dn8w+WSy1qIePHPH67koiVZ/OYzG1lVMHtz2VpHIpt9+IdvcqC+B4CHPrGWpDdem5dxBGRIXMSlY829VLf0caixh5J0O2ajGnEfdkmGnQ1l6TEooRBiqs4tSuNXn9owq6/x+rFWvvOHwxxpikytXVWZy9c/UklWshUMal7GEZAGW8SlPx5o4skdtQCYjAZCZ4U4dNnN3H1ZBauLUmNRPCHEPPbE9tN89dn9g/PkFqOB+z60nNzU+b0oVRpsEXcONfTw8sGmwd9TkkycHZL4i1cs4bbNpXNbMCFEXNh2vJ3SDAcn2/px2c08cPWKM7aVzVfTarCVUl8H7gBao4e+qrX+Q/S+rwCfBkLA57XWL0/ntYQYENaaCyuyeGFvA8Cw3jXAv79yDJNRceWK3MgQlxBCRP3wpjWEw5qa9n6ykq0kz0Lc9NkwEz3s/9Ba/9+hB5RSK4AbgUogH3hVKbVEaz2/IqmLuNTY7eX3+xsByEmxsreue9g53Z4ADzx3gHMK0qTBFkIMYzAoyrPmLtzpTJitVeLXAE9qrX1a65NANTC7KwjEgvH426cGe9WjDWOtKU7jL1+6hFWFMoctZocvGOKpHaepaeuPdVHEAjETDfbdSql9SqlHlVKu6LECoHbIOXXRY0JM20Bks2W5yeys6Rx2f5LZwLevXUVJhmOuiyYWkPY+P1uOtvL8noZYF0UsEOM22EqpV5VSB0a4XQP8BFgErAYagQcHHjbCU42Y+1ApdadSaqdSamdra+tIpwhxhnMKI/sy2/p8LDsrZOG6EhfvfOUKVuSnxKJoYgHJT7Pxk1uq+MIVssdfzI1x57C11ldM5ImUUj8DXor+WgcMzTReCIz4NVRr/QjwCMC6desmmdBYLESbF2fwH69CW5+ffn8Ii1Hhj+7BNhsNpNrHXkDS6w3wq7dOYTQoDtR388DVKyTGuBBi3pvWkLhSKm/Ir9cBB6I/vwDcqJSyKqXKgApg+3ReS4gBi7KcbCqPBEPx+EPkpCaxsiCF96/IYXG2k2NNwxehDdXS62N5XjJlmQ7uuLCcLKcsShNCzH/TXSX+faXUaiLD3TXAZwG01geVUk8Dh4Ag8DlZIS5mSrrDwnc/eg7/te0k2463c6y5j/PXZ7KvrouXDzWT7jCzJHf0xWaLspwsirPVoUIIMa0GW2v9yTHu+zbw7ek8vxCjKc108Dfri6lp6yfLaaWu08OhaPaux98+RTCsuX1zmWzpEkIkDEn+IeLW8rwUHvvbDXz+8gqykq2DC9DKs5xUt/Txud/s4t5n9o0YWEUIIeKNhCYVcU0pxcbyDDaWZwBQ09ZPS6+PcwpTSTIbY1w6IYSYOdJgi4RSmumgNFP2XwshEo8MiQshhBBxQBpsIYQQIg5Igy2EEELEAWmwhRBCiDggDbYQQggRB6TBFkIIIeKANNhiQQuFNd6ARM0VQsx/sg9bLDjd7gAHGrrZWt3GlqOtXLemgDsuKo91sYQQYkzSYIsFobqll9/tqmdZXgouu5n1pemsLEjlS1cuxWAYKX27EELML9Jgi4TW7Q7w1M7TfPd/jpCVbOWtey8fbKAldOnCpLWmrc9PU7cXo0GRmWwhy2lFqcT44tbY7eEP+5s4f3EGy3JTxj1fa01rn29W/w+e3V1HWaaT1UVps/L8C4U02CIh9fmCPPLacX7+5kk8gRAfOTefFXkpdLj9ZEr+6wXpZFs///7KMbZVt9He7z/jvtVFafzybzeQajfHqHQR4bDmwVeOctvmUrKTkyb12I5+Pz99/Ti/2nYKT3RdxiVLs/iHyxZTVZI++PxtfT5q2t28cqiJlw820+n20+sNck5hKp+9aBFpdjMr8lJwOSxnPH9rr4+XDzYRCIUpctlxWE3Ud3nQWpOdkoTLbuZEaz8n2vrpdvsJaY3HH6al18ue2i5yU5L42a3rKMmwE9YQDIfx+EP4gmG0hpDWmA0Ku9WEw2JMmC9QM0lpPX8yGa1bt07v3Lkz1sUQCeBvfvoW75zsoDzLwQ9uXMPKgtHzY4vEU9vhJqw1++u7+e+ddXS6/Rxp7MUfCo/6GIvJwAdW5rI4y8kFFZmsLkpDKYU3EOKVQ83kpiZRkmGfdk/UHwzz4t4GdtR0YDYacPtDNHR5CIU1TT1eTne4SbaaOKcolTSbhfZ+H3aLiSSzgc7+AGl2M4uznbT0+AiEwjT3ekm1mXnzvTZ6vMERXzPJbMCoFL5gmOAEstcZDYolOcmUZdpxWEy09fnYWt0+5v/fRFlMBvzBsZ+nIM3Gn+65CId1YfQplVLvaq3XjXfewvjfEAuOyx7pHRSk2SjJsMe4NGKqGrs92C0mUm2j93z7fEGqW/o43tLHvrouXjvWSk27e9Kv5Q+GeX5PAwAPvnKMgjQbWclWjrf00ev7a0NoNRnIdFpJMhv46geXc/nynHGfOxTWvLSvgVcPt/DOiXZaen1jnt/rC7K1un3SdRiNNzC5hjYU1hxu7OFwY8+MlWHAeI01QH2Xh83f/TPrS12sKXZRmZ9Ccbqd/DTb4FSW1pp+fwjnAmnUQXrYIgE0dXv5/h+PkGIz87WrV/Cb7ae5/7kDg/fbzEYuWZrFPe9bwpKc5BiWVExUMBTm8bdP8c2XDmE0KG49r5RFWU5SbWbeX5mD0aB4Ynstf9jfyDsn2wmEYvM5Vpxu5/V/unTMc7rcfu577gC/39c4R6VKbDkpVvJSbbj9QY639nNhRWZkyis/hXSHhQyHFWOcLSSVHrZYMF453MzvdtcDYLcYOdBwZq/AEwjxPwea2H26i5e/eFHM5ynjjTcQ4s332thf3026w8Ki6JAxwM6aDl5/rw205uKlWbx9ooO6TjdufwitwZlkIstppSDNxkfXFmAynhn6QWtNlztAXaeHY829vFndxtGmXuo63YPDu+GQ5hdvnhx8TKbTgkGpcXups8lqMnDnReV8cFXeGce11vzwz9W8fqyVfn+I5h4vHWfNl4vpae7x0dzz1/d+y9FWthxtHfw9yWzgjgvLOW9RBpvKMhJqF4j0sEVc0lpT0+6mzxvkZ2+c4IW9DYP3PXTzWh54/sCIH5TlWQ5evPuChJ8b8wUji3mcFhMGg+LPR5pp6/VzfVUhRoMiEArT0uuj2x3A5TCTl2qj2x3gWEsvtR1u6js9HGvpY39dF3WdnmHznpcty8YbCLHt+MSHbQvSbCSZDTT3+PAHw2g0obBmAlOq847JoLhkaRYPfmz14BfAhi4PD/7pGM/sqotx6cSAgjQbi7KdmAwKs1FhNRkJa43TaiI7JYnF2U7WFKVR6LLFdJHbnPSwlVJPAUujv6YBXVrr1UqpUuAwcDR639ta67um81pi/nl+Tz3VLX1kJVtJTjKRnZxEktlIqs3E4uzZG3r2BkJc+9BWjjT14rAYCQ350mkxGSh02Xjg6uXc89TeYY890drP/vpuNpVnzFr5YklrzQt7G7j/2QP0+oJU5qewLDeFF/c24A+F+fYfDmMzG2nt8xGKtpRGg6IyP4X99d1M9Pv7n4+0TLps9V2eST9mvgqGNVdW5mKzGPEGQuyo6eCLT+4ZtvpcxFZ9l2dCf3dZyVZ+93ebKUqf3+tdZqyHrZR6EOjWWn8j2mC/pLVeOZnnkB52fKhp62fL0RasZiN1nW48gTB5qUmUpke2elhMBqpKXKN+Y/3fw81oDRdUZJJkNhIK60nPOfV4A+hwZMj1zeo2DArKMh0YUBxu6uHHW47z7qnOER97xfJsfn7b+knXe77qcvs52NDDzppOXj7YxKFZWCgkRqcUE/6iI+Yfk0Hxnzeu5upz8mNWhjmdw1aRT+aPA5fNxPOJqdl+soPTHW7KsxwszUnGYTXx8sEmthxtIScliUKXnQsWZ5Kbeub+zuqWPqwmw4S/XRa4bDy9s25Yw2A1Gbj1vBIynVZeP9ZKQ7eXmrZ+Gru9aK2pyEnGEwixs6aDsI580FlNBhSKq1bmkmozk2Y3U5BmoyjdzhPbT3O6w01lfgpuX4jFOU4+fE4+BoPiVHs/u093sft0J/VdXlp7fXS6/YO9xrGcaO1Hax33+zyDoTCf+80uXj7YHOuiLGjSWMengjQbKwtSuHF9MZcuy451cSZkRnrYSqmLgH8f+IYQ7WEfBI4BPcD9Wus3xnse6WH/lS8Yorqlj4P1PRxq7KHbEyDTacETCNHnDZKXZsNhMeIPaVp7vWgNqXYzqTYzVpMRfzCMUpFvjxAZRg6ENDtqOjjW3IdSUOiy0djlpanHi8Vk4P4PLSfJbCQY0lxYkUlOShIW08j5YXzBEPWdHvbVdfO9Px6hsds7l/89k+awGPnwufmUZjq4eWMxKUnxv/Cso9/P73bV8a3fH451UYSICwYFd160iAsrMllX6sJqmh/RDmesh62UehXIHeGu+7TWz0d/vgl4Ysh9jUCx1rpdKVUFPKeUqtRaDxurU0rdCdwJUFxcPF5xEsLOmg5e2tdIbmoSWU4rpzrc7Kvror3PTyAUpscToLnXN6He4nS0Dlll6w+G+drzB4edU57poDzLgTcQpqkn0pM1GxWpNjO5qUkUptkxG+dn0rfIimYHG8syuHFDEYWu+T0/NZ4eb4D9dd3sPt3JzlOdbK1ui9l2JiHizYfOyeOeKypmdX3NbJt2D1spZQLqgSqt9YjLI5VSW4Avaa3H7D4neg87FNbUd3p45XAz33zpUKyLE9cMCkwGA4FwJKyh1WTgqpW5nL84k8XZTiqynSTHSS9aa01Hv5/6Lg9N3V6ae330+4J4AyHa+yLHq1v6ON0x+WAgQgjYUJbOU3dumrfTYHM5h30FcGRoY62UygI6tNYhpVQ5UAGcmIHXmle01vzLi4dYUxwJaN/jDdLe58JEIL0AAAoXSURBVCMvNYlLl2bT4w1S3+XhWFMve2q72Ha8jU53IMaljl+V+Sl8cFUeZZkOzl+UObidJh7no/3BMPvqunjnZAfP7o6sthdCzI5EiYo2E6W/kTOHwwEuAr6hlAoCIeAurXXHDLxWzJxq76ffFyIr2UpWciR5hFKKDIeFLz+zb9Kh/8TkJJkN2MxGDjX2sKOmg1cPN3P/h1aQ7rDMSWMdDmte2t9IdUsfp9r7sVuMVGQnc2VlzoSG2rccbeHdU52caO2npr2f6pY+fBMI0SiEmL4dNZ187te7uOPCctLsZipynPNm/noyJHDKBGit+c320/zby0fpcgdYnO3kMxeUceOGyJy7Lxhi16ku/t87p2jt9dHnDdLtCdDl9uMJhOIyMMR884mNxXzr2pUx6UnXdrj5wpO72XW6a9h9SsETd2wac193KKxZ/rU/nhFD2WhQ2MxGjAZFt0dGXYSYDZlOK/lpSZiNBnJTkihKt5OdbOWSpVmUZzljXbxBEx0SlwZ7EvzBMHtqu+jzBUizW1gTzeYznmAoTF2nh/313eyt7eKpnbX0jpJVR4yuON3Odz+6ivVl6dNa6PbGe61sP9nBZy4oHzFM6WDWpHY3bx1v47GtNWckfxjKbFT84/uW8neXLBrzNRu6PPiDYQxKkeYwk2w1oZQiGApz+2M7eLO6bcr1EUIMt6EsncduXx8XUQ0llvgssJgMbChLH3Z84EvPQOM9sNLbbjFhsxgxGQ1kJlvJcFiwW01YTQZ657TkieF0h5ubf/4OFpOBDIcFl91CgctGeZaDyvxUVhdGQgwOxA6OZF+q583qNnyBMGl2M0aDYk9tF3aLkbsvWzzi67x+rJWfvn6cpm4vgZDGbjVS4IpkbspPtVHoslGcYWdRlnNCQ2vhsMZkULR6AnS4/fTUBujs99PhDtDWF0mRaDSoWd8VIMRCUZ4ZSasbD431ZEgPewaEw5pTHW52n+7k+T0N7DrdSa83iCmaU7bbE0iosIzzmcNiZHG2k3SHhRSbmTSbmdxUG/lpkeGwJTnJk1p44g2EqGnvpz4aT1vryN52Z5IJp9UUWdPgtHKyvZ9nd9VzuLEHXzBMWGt8wTDNPV6ae7yy/UqIOZbhsPCl9y/lhqrCebv1dIAMicdQOKy5/uFt7B5hzlPEXqHLxrLcFC5ZmsUNVYUkmY109Ps50tjD4aZejjT2cLKtn7pOD83RoDRjMRsVWjMsQYYQIvbSHRYuWJzJxvJ01ha7qMh2DssaF2vSYMfQ0ztq+fLv9knIwjhQnuXAbDBwtFkmKYRYCGxmIxU5TorT7SzPS+HOi8pj3gOXBpvIYq/H3z5FKKxZlOXkUGMPXW4/F1Zk0e8L8urhFlp6vfR4AvR6g+SmJrGpPIOqEhfLcpNx2S1TzqUaCmu6PQFOtPbx/J4GWnt9dHn8dLkDeAKhSFrBaGrBLo9ftoUJIUQMpCSZyHRaSbObyUuzceWKHEJhTWuvjw63nwyHheJ0B6WZdorT7dgtMz8vLg028N87a/k/v9035cebDIp0h4XsFCsl6Q6KMyJbAlKSzCQnmUixmTEbDbT3+Wjp9dHR78diMmC3GLFbTDgsRlJsZgpdNvLTbBiVor3fT1N3JH53c4+Xll4fv91ZS8M8j8UthBACXvqHC1hZkDqjzymrxJl+Fp1gWNPSG2mMD9RPL2WhQUX23sriIyGEiF+x7OMmdIM9n4Q1hKWxFkIIMUXza6mcEEIIIUYkDbYQQggRB6TBFkIIIeJAQs9h31BVyHVrC2JdDCGEEAnCNMWtvjPy2jF75TlgMCgMxFeeZCGEEGIkMiQuhBBCxAFpsIUQQog4IA22EEIIEQekwRZCCCHigDTYQgghRByQBlsIIYSIA9JgCyGEEHFAGmwhhBAiDsyrfNhKqVbgVKzLMQsygbZYF2KWJXodpX7xL9HrKPWLXyVa66zxTppXDXaiUkrtnEhy8niW6HWU+sW/RK+j1C/xyZC4EEIIEQekwRZCCCHigDTYc+ORWBdgDiR6HaV+8S/R6yj1S3Ayhy2EEELEAelhCyGEEHFAGuwZppT6mFLqoFIqrJRaN+R4qVLKo5TaE709POS+KqXUfqVUtVLqB0qpeZvEe7T6Re/7SrQOR5VS7x9y/KrosWql1L1zX+qpU0p9XSlVP+R9++CQ+0asb7yJ5/dnNEqpmug1tUcptTN6LF0p9YpS6r3ov65Yl3MylFKPKqValFIHhhwbsU4q4gfR93SfUmpt7Eo+MaPUL+Gvv0nRWsttBm/AcmApsAVYN+R4KXBglMdsB84DFPA/wAdiXY8p1G8FsBewAmXAccAYvR0HygFL9JwVsa7HJOr7deBLIxwfsb6xLu8U6hfX788Y9aoBMs869n3g3ujP9wLfi3U5J1mni4C1Qz9HRqsT8MHoZ4kCNgHvxLr8U6xfQl9/k71JD3uGaa0Pa62PTvR8pVQekKK1fktH/hJ/BVw7awWcpjHqdw3wpNbap7U+CVQDG6K3aq31Ca21H3gyem68G62+8SZR35+RXAP8MvrzL5nH19lItNavAx1nHR6tTtcAv9IRbwNp0c+aeWuU+o0mUa6/SZEGe26VKaV2K6VeU0pdGD1WANQNOacueizeFAC1Q34fqMdox+PJ3dFhxUeHDKMmQr0gcepxNg38SSn1rlLqzuixHK11I0D03+yYlW7mjFanRHpfE/n6mxRTrAsQj5RSrwK5I9x1n9b6+VEe1ggUa63blVJVwHNKqUoiQ1Zni+nS/SnWb7R6jPSlcF5tTRirvsBPgG8SKfM3gQeBTzEP37cpSpR6nO18rXWDUiobeEUpdSTWBZpjifK+Jvr1NynSYE+B1vqKKTzGB/iiP7+rlDoOLCHyzbBwyKmFQMNMlHOqplI/IvUoGvL70HqMdnxemGh9lVI/A16K/jpWfeNJotTjDFrrhui/LUqpZ4kMlzYrpfK01o3R4eGWmBZyZoxWp4R4X7XWzQM/J+j1NykyJD5HlFJZSilj9OdyoAI4ER3G6lVKbYquDr8VGK0XO5+9ANyolLIqpcqI1G87sAOoUEqVKaUswI3Rc+PCWfN+1wEDK1hHq2+8iev3ZyRKKYdSKnngZ+BKIu/bC8Bt0dNuIz6vs7ONVqcXgFujq8U3Ad0DQ+fxZAFcf5MT61VviXYj8kdVR6Q33Qy8HD1+PXCQyMrGXcCHhzxmHZE/xOPAj4gGtJmPt9HqF73vvmgdjjJkpTuRFavHovfdF+s6TLK+jwP7gX1EPiTyxqtvvN3i+f0ZpT7l0etsb/Sauy96PAP4X+C96L/psS7rJOv1BJGptUD0Gvz0aHUiMmT8UPQ93c+QHR3z9TZK/RL++pvMTSKdCSGEEHFAhsSFEEKIOCANthBCCBEHpMEWQggh4oA02EIIIUQckAZbCCGEiAPSYAshhBBxQBpsIYQQIg5Igy2EEELEgf8PLHM9t+87xj8AAAAASUVORK5CYII=\n"
          },
          "metadata": {
            "needs_background": "light"
          }
        }
      ]
    },
    {
      "metadata": {
        "trusted": true
      },
      "cell_type": "code",
      "source": "world.head(2)",
      "execution_count": 4,
      "outputs": [
        {
          "output_type": "execute_result",
          "execution_count": 4,
          "data": {
            "text/plain": "      pop_est continent         name iso_a3  gdp_md_est  \\\n0  28400000.0      Asia  Afghanistan    AFG     22270.0   \n1  12799293.0    Africa       Angola    AGO    110300.0   \n\n                                            geometry  \n0  POLYGON ((61.21081709172574 35.65007233330923,...  \n1  (POLYGON ((16.32652835456705 -5.87747039146621...  ",
            "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>pop_est</th>\n      <th>continent</th>\n      <th>name</th>\n      <th>iso_a3</th>\n      <th>gdp_md_est</th>\n      <th>geometry</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>28400000.0</td>\n      <td>Asia</td>\n      <td>Afghanistan</td>\n      <td>AFG</td>\n      <td>22270.0</td>\n      <td>POLYGON ((61.21081709172574 35.65007233330923,...</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>12799293.0</td>\n      <td>Africa</td>\n      <td>Angola</td>\n      <td>AGO</td>\n      <td>110300.0</td>\n      <td>(POLYGON ((16.32652835456705 -5.87747039146621...</td>\n    </tr>\n  </tbody>\n</table>\n</div>"
          },
          "metadata": {}
        }
      ]
    },
    {
      "metadata": {
        "trusted": true
      },
      "cell_type": "code",
      "source": "cities.head(2)",
      "execution_count": 5,
      "outputs": [
        {
          "output_type": "execute_result",
          "execution_count": 5,
          "data": {
            "text/plain": "           name                                     geometry\n0  Vatican City  POINT (12.45338654497177 41.90328217996012)\n1    San Marino    POINT (12.44177015780014 43.936095834768)",
            "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>name</th>\n      <th>geometry</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>Vatican City</td>\n      <td>POINT (12.45338654497177 41.90328217996012)</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>San Marino</td>\n      <td>POINT (12.44177015780014 43.936095834768)</td>\n    </tr>\n  </tbody>\n</table>\n</div>"
          },
          "metadata": {}
        }
      ]
    },
    {
      "metadata": {},
      "cell_type": "markdown",
      "source": "### Spatial Join"
    },
    {
      "metadata": {
        "trusted": true
      },
      "cell_type": "code",
      "source": "cities_with_country = gpd.sjoin(cities, world, how=\"inner\", op='intersects')",
      "execution_count": 6,
      "outputs": []
    },
    {
      "metadata": {
        "trusted": true
      },
      "cell_type": "code",
      "source": "cities_with_country.head(3)",
      "execution_count": 7,
      "outputs": [
        {
          "output_type": "execute_result",
          "execution_count": 7,
          "data": {
            "text/plain": "        name_left                                     geometry  index_right  \\\n0    Vatican City  POINT (12.45338654497177 41.90328217996012)           79   \n1      San Marino    POINT (12.44177015780014 43.936095834768)           79   \n192          Rome    POINT (12.481312562874 41.89790148509894)           79   \n\n        pop_est continent name_right iso_a3  gdp_md_est  \n0    58126212.0    Europe      Italy    ITA   1823000.0  \n1    58126212.0    Europe      Italy    ITA   1823000.0  \n192  58126212.0    Europe      Italy    ITA   1823000.0  ",
            "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>name_left</th>\n      <th>geometry</th>\n      <th>index_right</th>\n      <th>pop_est</th>\n      <th>continent</th>\n      <th>name_right</th>\n      <th>iso_a3</th>\n      <th>gdp_md_est</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>Vatican City</td>\n      <td>POINT (12.45338654497177 41.90328217996012)</td>\n      <td>79</td>\n      <td>58126212.0</td>\n      <td>Europe</td>\n      <td>Italy</td>\n      <td>ITA</td>\n      <td>1823000.0</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>San Marino</td>\n      <td>POINT (12.44177015780014 43.936095834768)</td>\n      <td>79</td>\n      <td>58126212.0</td>\n      <td>Europe</td>\n      <td>Italy</td>\n      <td>ITA</td>\n      <td>1823000.0</td>\n    </tr>\n    <tr>\n      <th>192</th>\n      <td>Rome</td>\n      <td>POINT (12.481312562874 41.89790148509894)</td>\n      <td>79</td>\n      <td>58126212.0</td>\n      <td>Europe</td>\n      <td>Italy</td>\n      <td>ITA</td>\n      <td>1823000.0</td>\n    </tr>\n  </tbody>\n</table>\n</div>"
          },
          "metadata": {}
        }
      ]
    }
  ],
  "metadata": {
    "kernelspec": {
      "name": "python3",
      "display_name": "Python [default]",
      "language": "python"
    },
    "hide_input": false,
    "language_info": {
      "name": "python",
      "version": "3.6.6",
      "mimetype": "text/x-python",
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "pygments_lexer": "ipython3",
      "nbconvert_exporter": "python",
      "file_extension": ".py"
    },
    "varInspector": {
      "window_display": true,
      "cols": {
        "lenName": 16,
        "lenType": 16,
        "lenVar": 40
      },
      "kernels_config": {
        "python": {
          "library": "var_list.py",
          "delete_cmd_prefix": "del ",
          "delete_cmd_postfix": "",
          "varRefreshCmd": "print(var_dic_list())"
        },
        "r": {
          "library": "var_list.r",
          "delete_cmd_prefix": "rm(",
          "delete_cmd_postfix": ") ",
          "varRefreshCmd": "cat(var_dic_list()) "
        }
      },
      "types_to_exclude": [
        "module",
        "function",
        "builtin_function_or_method",
        "instance",
        "_Feature"
      ]
    },
    "gist": {
      "id": "",
      "data": {
        "description": "geopandas spatial join",
        "public": true
      }
    }
  },
  "nbformat": 4,
  "nbformat_minor": 2
}

以上是关于text geopandas空间连接的主要内容,如果未能解决你的问题,请参考以下文章

(数据科学学习手札88)基于geopandas的空间数据分析——空间计算篇(下)

text geopandas单位 - 可能-solution.ipynb

python包介绍:GeoPandas(初识)

text 在geopandas中打开压缩的shapefile

(数据科学学习手札82)基于geopandas的空间数据分析——geoplot篇(上)

GeoPandas安装保姆级教程