text geopandas单位 - 可能-solution.ipynb

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了text geopandas单位 - 可能-solution.ipynb相关的知识,希望对你有一定的参考价值。

{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "[Example from Geopandas documentation](http://geopandas.readthedocs.io/en/latest/gallery/create_geopandas_from_pandas.html)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style>\n",
       "    .dataframe thead tr:only-child th {\n",
       "        text-align: right;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>City</th>\n",
       "      <th>Country</th>\n",
       "      <th>Latitude</th>\n",
       "      <th>Longitude</th>\n",
       "      <th>Coordinates</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Buenos Aires</td>\n",
       "      <td>Argentina</td>\n",
       "      <td>-34.58</td>\n",
       "      <td>-58.66</td>\n",
       "      <td>POINT (-58.66 -34.58)</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Brasilia</td>\n",
       "      <td>Brazil</td>\n",
       "      <td>-15.78</td>\n",
       "      <td>-47.91</td>\n",
       "      <td>POINT (-47.91 -15.78)</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Santiago</td>\n",
       "      <td>Chile</td>\n",
       "      <td>-33.45</td>\n",
       "      <td>-70.66</td>\n",
       "      <td>POINT (-70.66 -33.45)</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Bogota</td>\n",
       "      <td>Colombia</td>\n",
       "      <td>4.60</td>\n",
       "      <td>-74.08</td>\n",
       "      <td>POINT (-74.08 4.6)</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Caracas</td>\n",
       "      <td>Venezuela</td>\n",
       "      <td>10.48</td>\n",
       "      <td>-66.86</td>\n",
       "      <td>POINT (-66.86 10.48)</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "           City    Country  Latitude  Longitude            Coordinates\n",
       "0  Buenos Aires  Argentina    -34.58     -58.66  POINT (-58.66 -34.58)\n",
       "1      Brasilia     Brazil    -15.78     -47.91  POINT (-47.91 -15.78)\n",
       "2      Santiago      Chile    -33.45     -70.66  POINT (-70.66 -33.45)\n",
       "3        Bogota   Colombia      4.60     -74.08     POINT (-74.08 4.6)\n",
       "4       Caracas  Venezuela     10.48     -66.86   POINT (-66.86 10.48)"
      ]
     },
     "execution_count": 42,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "%matplotlib inline\n",
    "import matplotlib.pyplot as plt\n",
    "import pandas as pd\n",
    "import geopandas as gpd\n",
    "from shapely.geometry import Point\n",
    "\n",
    "df = pd.DataFrame(\n",
    "    {'City': ['Buenos Aires', 'Brasilia', 'Santiago', 'Bogota', 'Caracas'],\n",
    "     'Country': ['Argentina', 'Brazil', 'Chile', 'Colombia', 'Venezuela'],\n",
    "     'Latitude': [-34.58, -15.78, -33.45, 4.60, 10.48],\n",
    "     'Longitude': [-58.66, -47.91, -70.66, -74.08, -66.86]})\n",
    "\n",
    "df['Coordinates']  = list(zip(df.Longitude, df.Latitude))\n",
    "df['Coordinates'] = df['Coordinates'].apply(Point)\n",
    "\n",
    "gdf = gpd.GeoDataFrame(df, geometry='Coordinates')\n",
    "gdf.head()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Set the CRS on the GeoDataFrame to the WGS84 (EPSG:4326). This is the native CRS for the coordinates you have supplied. Once that's set, then use `to_crs` to transform them into EPSG:3395."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'init': 'epsg:3395', 'no_defs': True}"
      ]
     },
     "execution_count": 43,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# not in the example - add mercato projection, set units to meters\n",
    "gdf.crs = {'init': 'epsg:4326'}\n",
    "gdf = gdf.to_crs(epsg = 3395)\n",
    "gdf.crs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style>\n",
       "    .dataframe thead tr:only-child th {\n",
       "        text-align: right;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>City</th>\n",
       "      <th>Country</th>\n",
       "      <th>Latitude</th>\n",
       "      <th>Longitude</th>\n",
       "      <th>Coordinates</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Buenos Aires</td>\n",
       "      <td>Argentina</td>\n",
       "      <td>-34.58</td>\n",
       "      <td>-58.66</td>\n",
       "      <td>POINT (-6530001.329933428 -4082699.516779151)</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Brasilia</td>\n",
       "      <td>Brazil</td>\n",
       "      <td>-15.78</td>\n",
       "      <td>-47.91</td>\n",
       "      <td>POINT (-5333316.803905737 -1767646.178485063)</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Santiago</td>\n",
       "      <td>Chile</td>\n",
       "      <td>-33.45</td>\n",
       "      <td>-70.66</td>\n",
       "      <td>POINT (-7865835.21945271 -3931636.078604394)</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Bogota</td>\n",
       "      <td>Colombia</td>\n",
       "      <td>4.60</td>\n",
       "      <td>-74.08</td>\n",
       "      <td>POINT (-8246547.877965705 509196.2974916489)</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Caracas</td>\n",
       "      <td>Venezuela</td>\n",
       "      <td>10.48</td>\n",
       "      <td>-66.86</td>\n",
       "      <td>POINT (-7442821.154438271 1165421.424891677)</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "           City    Country  Latitude  Longitude  \\\n",
       "0  Buenos Aires  Argentina    -34.58     -58.66   \n",
       "1      Brasilia     Brazil    -15.78     -47.91   \n",
       "2      Santiago      Chile    -33.45     -70.66   \n",
       "3        Bogota   Colombia      4.60     -74.08   \n",
       "4       Caracas  Venezuela     10.48     -66.86   \n",
       "\n",
       "                                     Coordinates  \n",
       "0  POINT (-6530001.329933428 -4082699.516779151)  \n",
       "1  POINT (-5333316.803905737 -1767646.178485063)  \n",
       "2   POINT (-7865835.21945271 -3931636.078604394)  \n",
       "3   POINT (-8246547.877965705 509196.2974916489)  \n",
       "4   POINT (-7442821.154438271 1165421.424891677)  "
      ]
     },
     "execution_count": 49,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gdf.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style>\n",
       "    .dataframe thead tr:only-child th {\n",
       "        text-align: right;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>City</th>\n",
       "      <th>Country</th>\n",
       "      <th>Latitude</th>\n",
       "      <th>Longitude</th>\n",
       "      <th>Coordinates</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Buenos Aires</td>\n",
       "      <td>Argentina</td>\n",
       "      <td>-34.58</td>\n",
       "      <td>-58.66</td>\n",
       "      <td>POLYGON ((-6529991.329933428 -4082699.51677915...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Brasilia</td>\n",
       "      <td>Brazil</td>\n",
       "      <td>-15.78</td>\n",
       "      <td>-47.91</td>\n",
       "      <td>POLYGON ((-5333306.803905737 -1767646.17848506...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Santiago</td>\n",
       "      <td>Chile</td>\n",
       "      <td>-33.45</td>\n",
       "      <td>-70.66</td>\n",
       "      <td>POLYGON ((-7865825.21945271 -3931636.078604394...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Bogota</td>\n",
       "      <td>Colombia</td>\n",
       "      <td>4.60</td>\n",
       "      <td>-74.08</td>\n",
       "      <td>POLYGON ((-8246537.877965705 509196.2974916489...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Caracas</td>\n",
       "      <td>Venezuela</td>\n",
       "      <td>10.48</td>\n",
       "      <td>-66.86</td>\n",
       "      <td>POLYGON ((-7442811.154438271 1165421.424891677...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "           City    Country  Latitude  Longitude  \\\n",
       "0  Buenos Aires  Argentina    -34.58     -58.66   \n",
       "1      Brasilia     Brazil    -15.78     -47.91   \n",
       "2      Santiago      Chile    -33.45     -70.66   \n",
       "3        Bogota   Colombia      4.60     -74.08   \n",
       "4       Caracas  Venezuela     10.48     -66.86   \n",
       "\n",
       "                                         Coordinates  \n",
       "0  POLYGON ((-6529991.329933428 -4082699.51677915...  \n",
       "1  POLYGON ((-5333306.803905737 -1767646.17848506...  \n",
       "2  POLYGON ((-7865825.21945271 -3931636.078604394...  \n",
       "3  POLYGON ((-8246537.877965705 509196.2974916489...  \n",
       "4  POLYGON ((-7442811.154438271 1165421.424891677...  "
      ]
     },
     "execution_count": 50,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gdf['Coordinates'] = gdf.buffer(10)\n",
    "gdf.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0    POLYGON ((-6529991.329933428 -4082699.51677915...\n",
       "1    POLYGON ((-5333306.803905737 -1767646.17848506...\n",
       "2    POLYGON ((-7865825.21945271 -3931636.078604394...\n",
       "3    POLYGON ((-8246537.877965705 509196.2974916489...\n",
       "4    POLYGON ((-7442811.154438271 1165421.424891677...\n",
       "Name: Coordinates, dtype: object"
      ]
     },
     "execution_count": 51,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gdf.geometry"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.axes._subplots.AxesSubplot at 0x1e517dbd4a8>"
      ]
     },
     "execution_count": 52,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMUAAAD8CAYAAADHTWCVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADaRJREFUeJzt3X+MZeVdx/H3V1bQaKC7sJS2sC7EjQk0xrAT2JqSICAs\naNhaqdn+wwZINv0Vf8Xo4iZirNVCTUiQtoRIU9YoP0o1kAhZFrSpMV3orAIL0u0OIEpFWLJAa0jA\ntV//OM+4d797Z+7MvTPMzsz7lZzcc5/znPM8s7mfe8+5s3O+kZlIOuxHFnoC0rHGUEiFoZAKQyEV\nhkIqDIVUGAqpMBRSYSikYsVCT+BYccopp+TatWsXehqaR3v27HktM1cP6mcomrVr1zI+Pr7Q09A8\niogXZ9LP0yepMBRSYSikwlBIhaGQCkMhFYZCKgyFVBgKqTAUUmEopGJOQhERX4mIVyPi6Z62VRGx\nKyL2t8eVrT0i4paImIiIpyLi3J59trT++yNiS0/7+ojY2/a5JSJi2DGkQebqk+KrwMbStg14NDPX\nAY+25wCXA+vashX4MnQvcOAG4HzgPOCGyRd567O1Z7+Nw4whzcSchCIzvwkcLM2bgDvb+p3AR3ra\nd2RnN/CeiHgfcBmwKzMPZubrwC5gY9t2YmZ+K7s7t+0ox5rNGNJA83lN8d7MfBmgPZ7a2j8A/EdP\nv5da23TtL/VpH2aMI0TE1ogYj4jxAwcOzPoH1NK0EBfa0acth2gfZowjGzJvz8yxzBxbvXrg355o\nmZjPULwyecrSHl9t7S8BZ/T0Ox34zwHtp/dpH2YMaaD5DMUDwOQ3SFuA+3var27fEG0A3mynPjuB\nSyNiZbvAvhTY2bb9ICI2tG+dri7Hms0Y0mCZOfIC3AW8DPwP3bv0dcDJdN8I7W+Pq1rfAL4IPAfs\nBcZ6jnMtMNGWa3rax4Cn2z63AtHaZz3GVMv69etTSxswnjN4PU++uJa9sbGx9G+0l7aI2JOZY4P6\n+RttqTAUUmEopMJQSIWhkApDIRWGQioMhVQYCqkwFFJhKKTCUEiFoZAKQyEVhkIqDIVUGAqpMBRS\nYSikwlBIhaGQCkMhFYZCKgyFVBgKqTAUUmEopMJQSMWSDkVEbIyIfa0g5LbBe0hLOBQRcRzd7fgv\nB84GPh4RZy/srLQYLNlQ0FVYncjM5zPzHeBuugKR0rSWcihmVAxSqpZyKAYWg7Q6qvpZyqEYWAwy\nrY6qPpZyKL4NrIuIMyPieGAzXYFIaVorFnoC8yUzD0XEZ+iqrh4HfCUzn1ngaWkRWLKhAMjMB4EH\nF3oeWlyW8umTNBRDIRWGQioMhVQYCqkwFFJhKKTCUEiFoZAKQyEVhkIqDIVUGAqpMBRSYSikwlBI\nhaGQCkMhFYZCKgyFVBgKqTAUUmEopMJQSIWhkApDIRWGQioMhVQYCqkYKRQR8bGIeCYifhgRY2Xb\n9a0q6b6IuKynvW/F0lZH4rGI2B8R97SaEkTECe35RNu+dtgxpJkY9ZPiaeCjwDd7G1sV0s3AOcBG\n4EsRcdyAiqU3Ajdn5jrgdeC61n4d8Hpm/jRwc+s37BjSQCOFIjOfzcx9fTZtAu7OzLcz8wVggq5a\nad+KpRERwEXAfW3/O4GP9BzrzrZ+H3Bx6z+rMUb5ObW8zNc1xVSVSadqPxl4IzMPlfYjjtW2v9n6\nz3YMaUYGVjKKiEeA0/ps2p6Z90+1W5+2pH8Ic5r+0x1rtmMcJSK2AlsB1qxZ06+LlqGBocjMS4Y4\n7nSVSfu1vwa8JyJWtE+D3v6Tx3opIlYAJwEHhxjjKJl5O3A7wNjYWN/gaPmZr9OnB4DN7ZujM4F1\nwONMUbE0MxP4B+Cqtv8W4P6eY21p61cBf9/6z2qMefo5tQSNVAgyIn4F+HNgNfB3EfFEZl6Wmc9E\nxL3AvwKHgE9n5v+2faaqWPp7wN0R8cfAvwB3tPY7gL+MiAm6T4jNAEOOIQ0U3ZuuxsbGcnx8fKGn\noXkUEXsyc2xQP3+jLRWGQioMhVQYCqkwFFJhKKTCUEiFoZAKQyEVhkIqDIVUGAqpMBRSYSikwlBI\nhaGQCkMhFYZCKgyFVBgKqTAUUmEopMJQSIWhkApDIRWGQioMhVQYCqkwFFIxanXUL0TEdyLiqYj4\n24h4T882q6NqURr1k2IX8MHM/Fngu8D1YHVULW6jVkd9uKd44266UlpgdVQtYnN5TXEt8FBbXxTV\nUSNia0SMR8T4gQMHZvyDamkbGIqIeCQinu6zbOrps52uxNZfTTb1OdR0FU3nsjrqdMc6sjHz9swc\ny8yx1atX9+uiZWjk6qgRsQX4ZeDiPFwrbFFUR5X6GfXbp410BRyvzMy3ejZZHVWL1kjVUYFbgROA\nXd21L7sz8xNWR9ViZnXUxuqoS5/VUaUhGQqpMBRSYSikwlBIhaGQCkMhFYZCKgyFVBgKqTAUUmEo\npMJQSIWhkApDIRWGQioMhVQYCqkwFFJhKKTCUEiFoZAKQyEVhkIqDIVUGAqpMBRSYSikYtRb8X+2\nFYF8IiIejoj3t/aIiFtaIcanIuLcnn22tGKP+1tti8n29RGxt+1zSyvhRUSsiohdrf+uiFg57BjS\njGTm0AtwYs/6rwO3tfUr6Ep9BbABeKy1rwKeb48r2/rKtu1x4ENtn4eAy1v7TcC2tr4NuHHYMaZb\n1q9fn1ragPGcwet61EKQ3+95+hMcLqO1CdjR5rKbrkrR+4DLgF2ZeTAzX6errrqxbTsxM7/VJr+D\n/oUga4HIGY8xys+p5WXUoi1ExOeAq+kKNP5Ca55tkcYPtPXaDvDezHwZIDNfjohThxxDmpGRC0Fm\n5vbMPIOuCORnJnfrc6g5Kd7YO7VRj2V1VPUzMBSZeUlmfrDPcn/p+tfAr7b1qYo0Ttd+ep92gFfa\naRHt8dUhx+j3s1kdVUcZ9dundT1PrwS+09YfAK5u3xBtAN5sp0A7gUsjYmX7FulSYGfb9oOI2NC+\ndbqa/oUga4HIGY8xys+p5WXUa4rPR8TPAD8EXgQ+0dofpPt2aAJ4C7gGIDMPRsRn6SqYAvxRZh5s\n658Evgr8ON23SpOF6j8P3BsR1wH/DnxshDGkgSwE2VgIcumzEKQ0JEMhFYZCKgyFVBgKqTAUUmEo\npMJQSIWhkApDIRWGQioMhVQYCqkwFFJhKKTCUEiFoZAKQyEVhkIqDIVUGAqpMBRSYSikwlBIhaGQ\nCkMhFYZCKgyFVBgKqZiTUETE70RERsQp7bnVUbVojRyKiDgD+EW62hGTLgfWtWUr8OXWdxVwA3A+\ncB5ww+SLvPXZ2rPfZPHGbcCjmbkOeLQ9H3YMaaC5+KS4GfhdjqwrZ3VULVqjlve6EvheZj5ZNs1b\ndVTA6qiaVwPLe0XEI8BpfTZtB36frqbcUbv1aTsmq6PSnXqxZs2aAcNpuRi6OirwPHAm8GRE/Btd\nFdJ/jojTsDqqFrGhT58yc29mnpqZazNzLd2L8dzM/C+sjqpFbNTqqFOxOqoWLaujNlZHXfqsjioN\nyVBIhaGQCkMhFYZCKgyFVBgKqTAUUuEv75qIOAC8OOTupwCvzeF05orzOtJPZebA/+RmKOZARIzP\n5Del7zbnNRxPn6TCUEiFoZgbty/0BKbgvIbgNYVU+EkhFcs6FBHxcxGxOyKeiIjxiDivtS/0fase\ni4i323IgIp7o2XZ922dfRFzW076xtU1ExLae9jPb8fZHxD0RcXxrP6E9n2jb185wjFci4p32eNMx\nNK+jxhhaZi7bBXgYuLytXwF8o2f9IbqbIGwAHmvtq+j+Nn0VsLKtr2zbHgc+1PZ5qOe4NwHb2vo2\n4MZZjvEG8Cdt29nAk8AJdH8f/xxwXFueA84Cjm99zm773Atsbuu3AZ9s658Cbmvrm4F7ZjDG94B/\nAn6y9fnwMTKvvmMMuyzrTwq6u3yc2NZP4vANDo6J+1bRBWIFcKBnn7sz8+3MfIHuT3HPa8tEZj6f\nme8AdwOb2qfVRcB9U4w/Oa/7gItb/+nGOA64ITP/u41xwTEyr6PGYATz9Tfai8VvAjsj4s/oTiV/\nvrXP232rImI29626AHiT7sU4uc/uKcapxzofOBl4IzMP9en//+Nk5qGIeLP1n26MHwUuiIjP0b2Z\n7D1G5tVvjKEt+VDE9Petuhj4rcz8ekT8GnAHcAnvzn2rNgA7IuKt9nwt3bvcP9KdDgB8HHiq51hT\njdPvE3/QvKbatonu3Xzy3Pz9dLdFvavts7LN/Q+A327v4u/GvGY7xtCWfCgy85KptkXEDuA32tOv\nAX/R1qe7p9SFpf0bzOC+Ve1Tove+VV+nu4a5q81lXzv2hcCFEbEC+CjdKdrksaa7p1W/9tfoTstW\ntHfl3v6Tx3qpjXUScBD4EkBm/mmb107gD9s+1wF/k5kZEe8Ah+j+H9O7Ma/ZjjG8hb7YXcgFeBa4\nsK1fDOxp67/EkRfBj+fhi+AX6N4tV7b1VW3bt1vfyQvtK1r7FzjyQvumGY5xFd1Fbe8Y53Dkxebz\ndKdWKzh8c7rJi81z2j5f48gL2k+19U9z5AXtvTMY4wBwSxvjWeDlNv+FnlffMYZ+XSz0C3OBQ/Fh\nYE/7h3wMWN/aA/gi3WnMXmCsZ59r6S7yJoBretrHgKfbPrdy+BejJ9PdLX1/e1w1wzG+T/epck2Z\n8/a2zz7aN1yt/Qrgu23b9p72s+i+GZtoL8QTWvuPtecTbftZMxjjyjavt+nejS86RubVd4xhF3+j\nLRXL/StZ6SiGQioMhVQYCqkwFFJhKKTCUEiFoZCK/wNV4vYsHSo4/QAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x1e51798c9b0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "gdf.plot()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The buffers are  there, but because the data are millions (billions?) of meters apart and the polygons only 20m wide they don't show up. However if you isolate a single location..."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.axes._subplots.AxesSubplot at 0x1e519148160>"
      ]
     },
     "execution_count": 54,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQ0AAAEQCAYAAACqWiFNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VvX5//HXlQ0hIUASwLCnDBEkKGK14kAcFTsdrePR\nYaVqh7VVv/5a21p/tcNOrXXU1borCF8HCA60CkLYWyAESQKEmQCBzOv7xznR25B1c49z3+e+no9H\nHoRzn/uc64Tcb878XKKqGGNMRyV5XYAxJr5YaBhjgmKhYYwJioWGMSYoFhrGmKBYaBhjguK70BCR\nW0VERSS3ldevFZFN7te1AdOvFJHVIrJKROY0vV9Efi8iG9zpM0UkpwM19BORN0RkvYisE5EB4do+\nY7wmfrpPQ0T6Ao8CJwLjVXVPs9e7A0VAIaDAUmA8cBAoB0aq6h4R+R1Qraq/EJEpwFuqWi8ivwVQ\n1dvaqeMd4B5VnSciXYBGVa0O57Ya4xW/7Wn8CfgpTiC05AJgnqruU9X9wDxgKiDuV6aICJCNEyKo\n6huqWu++fxHQB0BEkt29kCXuXsh33ekjgRRVnee+/5AFhvET34SGiFwKlKnqyjZmKwC2B/y9FChQ\n1TpgOrAad48D+GcL7/8m8Lr7/beASlWdAEwAviMiA4FhwAERmSEiy91gSQ5l24yJJSleFxAMEZkP\n9GrhpTuB/wGmtLeIFqapiKTihMY4oBj4G3AH8OuAdd8J1ANPu5OmAGNE5Cvu37sCQ3F+pme6y/oY\neB64jpZDyJi4E1ehoarntTRdRE4CBgIrnaML+gDLRORUVd0ZMGspcHbA3/sA7wBj3eVvcZf3AnB7\nwPKvBS4BztVPTwIJcLOqzm1Wy0RguaoWu39/GZiIhYbxCV8cnqjqalXNV9UBqjoAJxxOaRYYAHOB\nKSLSTUS64ewtzAXKgJEikufOdz6wHkBEpgK3AZc2OzcxF5ju7qUgIsNEJBNYAnQLWNY5wLowb7Ix\nnomrPY3jISKFwA2q+m1V3Scid+N8sAF+par73Pl+CbwrInXANpxDCoD7gXRgnrsXs0hVb8C5SjMA\nZ49GgN3AZaraICK3Am+605cCj0RhU42JCl9dcjXGRJ4vDk+MMdETN4cnubm5OmDAAK/LMMa3li5d\nukdV89qbL25CY8CAARQVFXldhjG+JSLbOjKfHZ4YY4JioWGMCYqFhjEmKBYaxpigWGgYY4JioWGM\nCYqFhjEmKGEJDRG5WUQ2ishad9QrRCRVRJ50h9BbLyJ3BMw/1Z1/s4jc3vqSjTGxJuSbu0RkMjAN\nGKOqNSKS7770VSBdVU8Skc7AOhF5FmcQnAdwniQtBZaIyGxVtSdBY1jlkToqqo5ScbCGioNH2VVV\nw/7DtRyqqae6toFDNfUcrqmnvuHYZ5nSUpLITE8mMz2FzLQUMtNTyO2SRn52BvlZ6eRnpdMzO4PM\n9Li51zChheNfaTpwr6rWAKhqhTtdcYbPSwE6AbVAFXAqsDlgvInncELHQsNjqsr2fUdYW17Jlt2H\nKN5zmK3u14HquoivPz8rnQG5mQzKzWRgbiZD8rswuqArPbMzIr5u03HhCI1hwJkicg9wFLhVVZcA\n/8EJgx1AZ+BH7qPpLQ25d1oY6jBB2ne4lsVb97J8+wHWlFWypqyKyiORD4fWOHsxNSzeuu8z0/Oy\n0jmpoCujC7pySr8cCgd0p4vtlXimQz/5dobZSwG64YxONQF4QUQG4exRNAAnuK+/5y6nxSH3Wlnv\n9cD1AP369etIqaYNlUfqWLhlL4uKna8NOw96XVKH7D5Yw1sbKnhrg7MTm5wkjOnTlYmDejBxUA9O\nG9idjFQbhjVaOhQarQ2zByAi04EZ7jB4i0WkEcgFrgLmuIP2VojI+zitA7YDfQMW0Qd35O8W1vsw\n8DBAYWGhDfxxHD7eW8389buYv34Xi7fuo74x/n+MDY3K8o8PsPzjAzz4zhY6pSbzuaG5nDcin3NO\n7EleVrrXJfpaOPbxXsYZ0u4dERkGpAF7cAbVPUdE/o1zeDIR+DPOuYuh7sjdZcAVOAFjwmT7vmpm\nryxn9opyNu6Kj72JUBypa2Deul3MW7cLkdWc0q8b08aewMUn9aZHFwuQcAtHaDwGPCYia3BOdl6r\nqioiDwCPA2twDkkeV9VVACJyE84Ym8nAY6q6Ngx1JLTKI3W8umoHLy8vY3HJvvbf4FOqsHTbfpZu\n28+v/ncdnx+Wx2XjCjh/ZE87hAmTuBnur7CwUG08jWOtKavkXwu3MWtlGUfrGr0uJ2bldE7l8sK+\nXHVaP/r3yPS6nJgkIktVtbDd+Sw04k9tfSOvrCrnqYXbWLH9gNflxBUROGtoHtdO6s/k4fm4g0Ub\nOh4adt0qjlTX1vPc4u08+l4x5ZVHvS4nLqnCgo92s+Cj3QzvmcX0swdzyZjepCTbExUdZXsacaDq\naB1Pvl/C4x+UsO9wrdfl+E7f7p24/qzBfK2wD+kpiXveww5PfOBoXQP/WriNB97ZHJU7MhNdn26d\nuOX8YUwbW0ByUuIdttjhSRxraFReWlbKn+d9ZIchUVS6/wi3vLCSh98t5qdTh9s5j1ZYaMSYxVv3\n8fNZa+Lmbk0/2rDzIN98oogzhvTgl5eOYkh+ltclxRQLjRhRcfAov3ltAzOXl3ldinG9v3kvU//8\nHt86cyDfP2eoPYXrsp+CxxoblacWlnDfGx9xsKbe63JMM/WNykMLipm1vJxfXDqSqaN7e12S5yw0\nPFSy5zA//c+qhL6DM17srDrKDf9exiVjevOraaPpnpnmdUmesYvTHmhsVB5/fytT//KuBUaceWXV\nDqb8aQFz1uzwuhTPWGhE2a6qo3z90Q/55f+us9u+49SeQ7Xc8O9l3PL8Cg4l4CGlhUYUvbOxggv/\n8h4Li/d6XYoJgxnLy7j0b/9lbXml16VElYVGFNQ1NPKb19dz3eNL7I5Onynec5gv/v0D/rWwhHi5\nUTJUFhoRtudQDVc9soiHFhR7XYqJkNr6Rn42ay0/eG4FR2obvC4n4iw0ImhteSWX/u2/LCnZ73Up\nJgpmryznaw8tZEflEa9LiSgLjQh5bfUOvvLgQrsNPMGsLqvk0vvfZ9nH/v2PIuTQOI5GSSXu9BUi\n4rsn0FSVB97ezPeeXsaROv/vqppj7T5YwxUPLeKVVS0OfRv3Qrq5K9hGSapa4r4+WVX3hLLuWNTY\nqPzqlXU88UGJ16UYj9U2NHLzs8vZe6iWaycN8LqcsAp1TyPYRkm+VVPfwPefW26BYT6hCnfNXssf\n5m701ZWVUEOjqVHShyKyQEQmuNP/AxzGaZT0MfAHVW269VGBN0RkqdvXpFUicr2IFIlI0e7du0Ms\nNXKO1DbwrSeKeGVV4t4laFp3/9ub+Z+Zq2n0QfsI6MDhSTgbJbmtGM9Q1XL3UGaeiGxQ1XdbWnc8\n9D05UtvAN59YYjdsmTY9u3g7DY3KvV8aQ1KcD/DTbmiEuVFSsaqWu8utEJGZOAHTYmjEOgsME4wX\nikoB4j44Qj08aWqURCuNkkREMnH2RDaISKaIZLnzZwJTcPqixB0LDHM8Xigq5fYZq+L6UCXUR+OD\napTkHrrMdIdQSwGeUdU5IdYQdXUNjXzv6aUWGOa4vFBUSmZ6Cj+/ZGRcDicYUmioai3wjRamH8K5\n7Np8ejFwcijr9JqqcttLq3h7Y+yemDWx7/H3S8jPymD62YO9LiVodkdokO6ds4EZy2xIPhO6387Z\nwAtF270uI2gWGkF4/P2t9uCZCas7Zqzm7Y0V7c8YQyw0OmjBR7u5+5V1XpdhfKahUfn+M8vZXBE/\no89baHRA8e5D3PTMMuL4hLeJYQdr6vn2k0VUxklDLAuNdlQeqePbTxVx8GjiDetmoqdkbzU3PbuM\n+obYHwLSQqMNqsotz6+gePdhr0sxCeC9TXv4/dyNXpfRLguNNvzzv1t5c0N8naQy8e2hd4t5O8Z/\n5yw0WrFi+wHufX2D12WYBHTLCytievQvC40WVB6p46ZnllFvZz6NB/ZX1/GDZ1fE7PkNC40W/HzW\nGkr3x27SG/9bXLKPB9/Z4nUZLbLQaGbu2p3MWuHPYdpMfPnrW5tYvyP2xq6y0Aiw/3Atd86My4du\njQ/VNSi3vriSuhg7TLHQCHDX7LXsOVTjdRnGfGJteVXMHaZYaLje2rCL2SvtsMTEnr+9tSmmbjO3\n0ACO1jVw1+y1XpdhTIvqGpS7Zq+NmcGJLTSAfyzYwvZ9drXExK73N+/ltdU7vS4DiFyzpDQRedxt\nirRSRM4OmH+8O32ziPxVPB666OO91TF3zGhMS+5+ZR2Ha7x/Biqk0GjWLGkU8Af3pe8AqOpJwPnA\nfSLStK4HgeuBoe7X1FBqCNWvX11HTX1snZ02piU7q47y93c2e11GxJoljQTeDJh2ACgUkd5Atqou\ndEcwfwq4LMQajtvSbft4Y90ur1ZvTND++d+t7Krytj9wpJolrQSmiUiKiAwExgN9gQKgNOD9pe60\nFkWyWZKq8tvXY/+JQmMCHa1r5C9vbvK0hnZDQ0Tmi8iaFr6m8dlmST/BaZYkOKOUlwJFwJ+BD4B6\nnJHJm2v1lLCqPqyqhapamJeXF/TGteWdjbtZXLKv/RmNiTHPL9nO1j3eDdcQkWZJqrob+FHAfB8A\nm4D9QJ+ARfQBon5zRGOj8ts59gSriU8Njcp9b2zk/qtO8WT9EWmWJCKd3WZIiMj5QL2qrlPVHcBB\nEZno7pFcA8wKsYagvbmhgg07Y+dmGWOC9erqHWzZfciTdYcaGo8Bg9xmSc/hNksC8oFlIrIeuA24\nOuA904FHgc3AFuD1EGsIiqrywNven4E2JhSq8NACb24ViFSzpBJgeCvvKQJGh7LeUCws3suK7Qe8\nWr0xYTNjWRk/PG8YJ+R0iup6E+6OULuRy/hFfaPyyHvR78OTUKGxcedB3tu0x+syjAmb55ds5+DR\n6LY+SKjQ+PeibV6XYExYVdc2MHN5dNuEJkxoHKqpZ8ay0vZnNCbO/Gvhtqg+AZswoTFzeRmHaxu8\nLsOYsNtUcYgPt0bvRsWECY2n7dDE+NjTH34ctXUlRGis31FlN3MZX3tj7c6onRBNiNB4OconioyJ\ntpr6Ruasic4gPb4PjYZGtZYEJiG8vCI6/zn6PjQ+LN7LTo/HHzAmGj7YspedlZH/Xfd9aLy6eofX\nJRgTFarw+prI/777OjRUlTfXx3YHbmPCKRq/774OjbXlVXZoYhLKh1v3UhXhqyi+Do15Nv6nSTB1\nDcq7H4V3aMzmfB0ab26w0DCJJ9KHKL4NjQPVtawtj72O28ZE2vub90T0WRQvmiW9486/wv3KD7WG\nlny4dR8x0sXOmKiqOFgT0YGHQxq5q1mzpJqAAPikWZI77XURmaCqTV2Jvu6O4BUxC7fsjeTijYlp\nC4v3MiivS0SWHdVmSSGuKyiLii00TOJaVBy5p16j3SypyePuocnP2urlerzNkiqr6+wBNZPQFm+N\n3H+a7R6eiMh8oFcLL93JZ5slTcBpljQIZ5TyETjNkrbxabMkcA5NykQkC3gJZ6Typ1pat6o+DDwM\nUFhY2OEzFGvKKzs6qzG+tKuqhoqqo+RnZ4R92dFuloSqlrl/HhSRZ4BTaSU0jtfqMgsNY1aXVXJu\nBEIjqs2S3MOVXHd6KnAJsCbEGo5hoWFM5D4HIV09wTkMecxtllSL2yzJvWIy193zKOPTZknp7vRU\nIBmYDzwSYg3HWGOhYUzEPgdRbZakqodxTopGzOGaerbtrY7kKoyJC+t3ROZigO/uCPWym7YxsaTs\nwBGO1oV/MG0LDWN8rGRv+D8PFhrG+NjW3RYa7Sqx0DDmE8UR+Dz4LjRK9x/xugRjYkbZgfB/HnwX\nGhUHbaQuY5pUVNWEfZm+Cg1VZVcEfkjGxKtI/Cfqq9A4VFPPkQhcYjImXtmeRjsqDtpehjGBdh+q\nobExvKNR+So0Ko9Ep5elMfGioVE5XFvf/oxB8FVoVNfYoYkxzVXXhvdz4avQOFQT3kQ1xg/C/bnw\nVWhUh3k3zBg/CPceuK9C43CYd8OM8QPb02hDJHs9GBOvwv25CEffk+cDepiUiMiKgNfuEJHNbp+T\nCwKmT3WnbRaR20OtwRgTPaGO3IWqXt70vYjcB1S6348ErgBGAScA890hAQEeAM4HSoElIjJbVdeF\nWosxJvJCDo0mbiuCr+GOGYrTROk5tyfKVhHZjDOIMMBmVS123/ecO6+FhjFxIJznNM4EdqnqJvfv\nBcD2gNdL3WmtTT9GsH1PWm2gYkwiC/MHo0N7Gm31PlHVWe73VwLPBr6thfmVloOqxTM1wfY96ZQW\nth0nY3wjM8yfiw4tra3eJwAikgJ8ic8OGlzKZ7uq9QHK3e9bmx6SzLTkcCzGGF/JTA/v5yJchyfn\nARtUtTRg2mzgChFJd1szDgUWA0uAoSIyUETScE6Wzg5HEZnptqdhTHPh/lyEa2lX8NlDE1R1rYi8\ngHOCsx64UVUbAETkJmAuTu+Tx1R1bTiKCHeiGuMHnb04PGmPql7XyvR7gHtamP4a8Fo41h0oOyM1\n3Is0Jq6JQJcw72n46o7QvKx0r0swJqb0yEwnOSm8l098FRpdO6WSluKrTTImJPkR+I/UV58wEYnI\nD8mYeNUz20KjXRYaxnwqPysj7Mv0XWj0zunkdQnGxIzeORYa7RqUm+l1CcbEjIER+Dz4LjQi8UMy\nJl4Nyu0S9mVaaBjjYwNyO4d9mb4LjUgkqzHxKLdLOlkRuOHRd6HRtXMqvbLDf/LHmHgzondWRJbr\nu9AAGF3Q1esSjPFcpD4HvgyNkyw0jInY58CfodEn2+sSjPGchUYQ7PDEJLqczqn06RaZGx19GRr5\nWRkM6BH+S03GxIvC/t1xxvoOP1+GBsDEQT28LsEYz0wc1D1iyw4pNI6zUVKJiKx231MUyvrbYqFh\nElkkf/9DGtIn2EZJTcP9AZNVdU8o626PhYZJVF07pTKyd+QuBoTl8CSgUVLTOKGfNEpS1a1AYKOk\nqOjVNYNBeXZLuUk8pw3sTlKYR+sKFK5zGh1tlAROj5M3RGSpiFzf1kKDbZbU3Lkn5gf9HmPi3Xkj\nekZ0+e2GhojMF5E1LXxNC5ito42SAM5Q1VOAC4EbReSs1tatqg+raqGqFubl5XVgcz7r3Aj/8IyJ\nNSIwOcL/WbZ7TiPcjZJUtenPChGZiXPY8m5wZXdMYf9udO2USuWRukgs3piYM7ZvTsQH2A7H4UmH\nGyWJSKaIZAGISCYwBVgThhpalJKcxOThwe+hGBOvIn1oAuEJjRYbJQFNjZLm8GmjpJ7Af0VkJU63\ntVdVdU4YamjVhSf1juTijYkpU0e31HI5vELuohJMoyRVLQZODnWdwTh7eB7ZGSlUHa2P5mqNibox\nfboyOC/y48n49o7QJukpyVw85gSvyzAm4i4bW9D+TGHg+9AA+OK46PwwjfFKcpLwhZOj859jQoRG\nYf9uEXviz5hY8LkhuVFrS5oQoZGUJFx5aj+vyzAmYq46LXq/3wkRGgBfK+xLanLkbq01xiu9u2ZE\n9e7nhAmNvKx0Lhxtl1+N/1x1aj9SkqP3UU6Y0AC4+vT+XpdgTFilJAmXn9q3/RnDKKFCo7B/Nxt0\n2PjKF04+ISJNntuSUKEhIkw/e7DXZRgTNl78PidUaABcMKqXNYk2vnDeiJ4M6xmZhkhtSbjQSE4S\nbvi87W2Y+Pe9yd78HidcaABcNq6Aghy72cvEr0mDe3BKv26erDshQyMtJYkfnjfU6zKMOW4/uWC4\nZ+tOyNAA+NIpfRiabx3mTfyZOqoX4zzay4AEDo3kJPE0rY05HkkCt14wzNsaPF27x84f2ZPx/b1L\nbGOC9dXxfRmSH/0rJoEi0ixJRHqIyNsickhE7m/2nvFus6TNIvJXiVTvuA4QEe76wki8q8CYjstK\nT+HWGNg7Dik0VPVyVR2rqmOBl4AZ7ktHgZ8Bt7bwtgeB63HGDR0KTA2lhlCN6ZPDVfYErIkDt0wZ\nFrXH39sSkWZJqnpYVf+LEx6B8/UGslV1oaoq8BRwWThqCMVPLhhOt86pXpdhTKtO7JXF1RNj49mp\nSDVLak0BTnuDJoFNlI4RarOkjsrpnMZtU0+M2PKNCdWvpo2O6pOsbYlUs6RWF9fCNG1hmvNCiM2S\ngvG1wr6cNjBynbaNOV5XntqPU2PodzNSzZJaU4rTOKnJJ02UvJaUJPz+KydzwZ/f5UhdQ/tvMCYK\nCnI6cefFI7wu4zMi1SypRaq6AzgoIhPd8yDXALPCUENY9OvRmdsvtMMUEzt+95UxdEkPudNIWEWk\nWRKAiJQAfwSuE5FSERnpvjQdeBSnk/wW4PUw1BA2V0/sz8RBsbMraBLX10/rxxlDcr0u4xiRbJY0\noJXpRcDoUNcbKUlJwn1fG8tFf3nPesAazwzOy+R/Loqtw5ImsXE6NsYU5HTi918Z43UZJkGlpyRx\n/1WnkBljhyVNLDRaMWVUL66bNMDrMkwC+vkXRjKid7bXZbTKQqMNd1x0oo0paqLq4jG9Y/4OZQuN\nNqSnJPPgN06hR2aa16WYBDC8Zxa//fIYPHwcq0MsNNrRp1tnHvzGeFKSYvsf0sS3bp1TefTawpi7\nvNoSC40OOHVgd+6+LGYv+Jg4l5Ik/P3r4+nbvbPXpXSIhUYHXXlqPzsxaiLiF5eO4vTBPbwuo8Ms\nNILws0tGcuHoXl6XYXzkpslD+EaMPL3aURYaQUhOEv50+Vi7Y9SExeWFffnxFG+H7jseFhpBykhN\n5uFrCmP6OrqJfeeN6Mk9Xxwd81dKWmKhcRyyM1J58psTGJRnndpM8E4f1IP7rxoXM+NjBCs+q44B\n+VkZPPediRYcJiinD+rBY9dNICM12etSjpuFRgjysy04TMc1BUantPgNDLDQCFlTcAy24DBtOGOI\nPwIDLDTCIj87gxdvmMTYvjlel2Ji0MUn9fZNYIA3fU/eEZGNAe/LD6WGWNE9M41nvnMaZw+P7Fim\nJr5cc3p//nrlONJT/BEYEOIgPKp6edP3InIfUOn+tanvyWhaHnDn6+5gPL7SOS2FR64p5LaXVjFj\nWZnX5RiP/fj8Ydx0zpC4vKzalqj2PUkEqclJ3PfVk7k1Dm/aMeGRnpLEX64Yy83nDvVdYED0+540\nedw9NPmZl20ZI0VEuOmcoTx89XgyfXIcazqmV3YGL95wOtPGttrOJ+5Fu+8JOIcmJ+EEzZnA1W2s\nOyrNkiJlyqhevPS9SfTp1snrUkwUjO2bw+ybzmBMH3+fEBenO2IIC3D6npQB45u3MRCR64BCVb2p\nlfe2+XqgwsJCLSqKz9MgB6prufXFVcxfv8vrUkyEXDdpAHdcdGJcn/AUkaWqWtjefFHteyIiKSKS\n636fClwCrAlDDTEtp3Maj1wznp9fMpLUZN8djSW07IwU/vGN8fzi0lFxHRjBCMcwQW31PckG0kTk\nMmAKsA2Y6wZGMjAfeCQMNcQ8EeGbnxtI4YBu3PTMcj7eV+11SSZE4/rl8NcrxsXN4DnhEvLhSbTE\n8+FJc4dr6vnN6+v596KPvS7FHIfUZOGH5w3ju2cNituHzloSzcMTE6TM9BR+fdlJPPPt0yjIsZOk\n8eSkgq68cvOZ3Dh5iK8CIxiJudUxYtKQXOb+6Cyuntgf/1149pf0lCR+csFwZnxvEsN7ZXldjqcs\nNDzWJT2Fuy8bzawbz+Bke3YlJp03oifzb/k8N04eQmqC7l0Eiv3x0hPEmD45zJw+iReXbufe1zew\nv9r6yHqtX/fO/OLSkZxzYk+vS4kpFhoxJClJuHxCP6aO6s3fF2zmifdLqKlv9LqshJPTOZUbzx7C\n1af3j+vBciLFQiMGde2cyh0XjuC6SQP4y/xNvFC0ncb4uMgV1zJSk/jW5wby3c8PJjsj1etyYpaF\nRgzr3bUT9355DN8+cxD3v7WJ2SvLLTwiICM1iSsm9ON7Zw8mPzvD63Jint2nEUc+3lvNQ+9u4cWl\npdTaYUvIsjNSuHbSAK6bNIAeXdK9LsdzHb1Pw0IjDlUcPMoT75fw/JLt7D1c63U5cadv905cPbE/\nV57ajyw7DPmEhUYCqKlvYM6anfxr4TaKtu33upyYJgLnnpjPNyb256yheSRZQ+9jdDQ07JxGHEtP\nSWba2AKmjS1gXXkVLy0rZdaKcvYcqvG6tJgxoEdnpo0t4Cvj+yTcMyKRYqHhEyNPyGbkCSO548IT\n+WDLXl5eXsactTuprm3wurSo65GZxiVjenPZuALG9s3x5ehZXrLQ8JmU5CTOGpbHWcPy+P91DSzc\nspf563cxf/0udlX5dw9kUF4m54/oybkjenJKv5yEfS4kGuycRoJQVdaWV7Hgo90sKt5LUcl+jtTF\n715I106pnDawOxMH9eDs4XkMyuvidUlxz85pmM8QEUYXdGV0QVdunDyE2vpGVpcdYFHxPpZ/fIA1\nZZXsrIrdcaD79+jM6IKujOubw+mDezCiV7adzPSIhUaCSktJYnz/7ozv3/2TabsP1rCmrJI1ZZUU\n7zlM8Z7DbN19iKqj9VGrK7dLGgNzMxmYm8ngvC6cVNCVUQVd6drJLo3GipBCQ0SeB4a7f80BDqjq\nWBE5H7gXSANqgZ+o6lvue8YDTwCdgNeAH2i8HCP5XF5WOpNPzGfyiZ/2r1JV9h2uZdu+aiqqjlJx\nsIaKqhp2VR1lf3Uth2rqqa5t4FBNPYdr6qlrOPafMj0licz0FOcrLZnM9BRyu6STn5VOfnY6+VkZ\n9MrOoH9uZ7t9Ow5EqlnSHuALqlouIqOBuUDTmO4PAtcDi3BCYyrweih1mMgREXp0Sbc7Js0nItUs\nabmqlrsvrwUyRCRdRHoD2aq60N27eAq4LBw1GGOiIxrNkr4MLFfVGpy9jcBRy0v5dA/kGPHe98QY\nP2r38ERE5gO9WnjpTlWd5X7fYrMkERkF/BZnJHKAlk53t3o+Q1UfBh4G55Jre7UaYyKv3dBQ1fPa\net1tlvQlYHyz6X2AmcA1qrrFnVwK9AmYrQ9QjjEmbkSkWZKI5ACvAneo6vtN01V1B3BQRCa650Gu\nAWY1X6CbJTSGAAAFTElEQVQxJnaFIzRaapZ0EzAE+Jnb6HmFiDRdx5sOPApsBrZgV06MiSt2G7kx\nBrBmScaYCLHQMMYEJW4OT0RkN04D6eOVi3Onarzzw3bYNsSOwO3or6p57b0hbkIjVCJS1JHjtVjn\nh+2wbYgdx7MddnhijAmKhYYxJiiJFBoPe11AmPhhO2wbYkfQ25Ew5zSMMeGRSHsaxpgwsNAwxgTF\n96EhIr8XkQ0iskpEZroP0zW9doeIbBaRjSJygZd1tkVEvioia0WkUUQKm70WF9sAICJT3To3i8jt\nXtfTUSLymIhUiMiagGndRWSeiGxy/+zmZY3tEZG+IvK2iKx3f5d+4E4Pejt8HxrAPGC0qo4BPgLu\nABCRkTgP243CGXLw7yKS7FmVbVuDM/zAu4ET42kb3LoeAC4ERgJXuvXHgydwfr6BbgfeVNWhwJvu\n32NZPfBjVR0BTARudH/+QW+H70NDVd9Q1abhtBfx6Xge04DnVLVGVbfiPHV7qhc1tkdV16vqxhZe\nipttwKlrs6oWq2ot8BxO/TFPVd8F9jWbPA140v3+SWJ82EpV3aGqy9zvDwLrcUbNC3o7fB8azXyT\nTx/FLwC2B7zW5tCDMSqetiGeau2Inu74ME3jxOS3M3/MEJEBwDjgQ45jO3zR96QjQxKKyJ04u2hP\nN72thfk9u/7cwWEVj3lbC9Ni9Rp6PNXqWyLSBXgJ+KGqVh1Pn1tfhEYHhiS8FrgEODegx0op0Ddg\nNk+HHmxvG1oRU9vQjniqtSN2iUhvVd3hjrJf4XVB7RGRVJzAeFpVZ7iTg94O3x+eiMhU4DbgUlWt\nDnhpNnCF21phIDAUWOxFjSGIp21YAgwVkYEikoZzAne2xzWFYjZwrfv9tcT4sJXu8Jr/BNar6h8D\nXgp+O1TV1184Jwe3Ayvcr38EvHYnzpCDG4ELva61jW34Is7/1DXALmBuvG2DW+tFOFewtuAcdnle\nUwfrfhbYAdS5/w7fAnrgXG3Y5P7Z3es629mGz+EcDq4K+CxcdDzbYbeRG2OC4vvDE2NMeFloGGOC\nYqFhjAmKhYYxJigWGsZ4TERudh/kWysiv2tlnhIRWe02HisKmH63+zDmChF5Q0RO6MD6xojIQnd9\nq0UkI6h67eqJMd4Rkck4l80vVtUaEclX1WNusBKREqBQVfc0m56tqlXu998HRqrqDW2sLwVYBlyt\nqitFpAdwQFUbOlqz7WkY463pwL2qWgPQUmC0pSkwXJm4t+aLSKb7SP8SEVkuIk0PB04BVqnqSvf9\ne4MJDLDQMMZrw4AzReRDEVkgIhNamU+BN0RkqYhcH/iCiNwjItuBrwM/dyffCbylqhOAycDvRSTT\nXZ+KyFwRWSYiPw22YDs8MSbC2noYEbgHeAv4ATABeB4YpM0+mCJygqqWu43U5wE3q/PIfuA8dwAZ\nqnqXe94jA+chTYDuwAXAxcCN7rqqce4C/X+q+mZHt8cXD6wZE8u0jYcRRWQ6MMMNicUi0ojT9Wx3\ns2WUu39WiMhMnPFJ3m22uGeAV4G7cJ4q/rI2G4dFRE4GFjSdGxGR14BTcMKjQ+zwxBhvvQycAyAi\nw4A0mrV7dM9PZDV9j3NeYo3796EBs14KbHC/nwvc7D6ohoiMC5g+RkQ6uydFPw+sC6Zg29MwxluP\nAY+544/WAteqqrqXTh9V1YuAnsBM9/OfAjyjqnPc998rIsOBRpxex01XTu4G/gyscoOjBLhEVfeL\nyB9xnjpW4DVVfTWYgu2chjEmKHZ4YowJioWGMSYoFhrGmKBYaBhjgmKhYYwJioWGMSYoFhrGmKD8\nH6nQH2JHgNy1AAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x1e5192b2828>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "gdf2.loc[0:0].plot()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "...you see one of your 10m buffered polygons."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}

以上是关于text geopandas单位 - 可能-solution.ipynb的主要内容,如果未能解决你的问题,请参考以下文章

text geopandas空间连接

text 在geopandas中打开压缩的shapefile

如何填充使用 geopandas 溶解地理数据框时创建的多面体中的孔?

GeoPandas安装保姆级教程

text MannirToken.sol

text calculator.sol