python 2.7中对数刻度的最佳拟合线
Posted
技术标签:
【中文标题】python 2.7中对数刻度的最佳拟合线【英文标题】:Best Fit Line on Log Log Scales in python 2.7 【发布时间】:2017-10-05 20:07:01 【问题描述】:这是对数刻度的网络 IP 频率等级图。完成这部分后,我尝试使用 Python 2.7 在对数刻度上绘制最佳拟合线。我必须使用 matplotlib 的“symlog”轴刻度,否则有些值无法正确显示,有些值会被隐藏。
我正在绘制的数据的 X 值是 URL,Y 值是 URL 的相应频率。
我的数据如下所示:
'http://www.bing.com/search?q=d2l&src=IE-TopResult&FORM=IETR02&conversationid= 123 0.00052210688591'
`http://library.uc.ca/ 118 4.57782298326e-05`
`http://www.bing.com/search?q=d2l+uofc&src=IE-TopResult&FORM=IETR02&conversationid= 114 4.30271029472e-06`
`http://www.nature.com/scitable/topicpage/genetics-and-statistical-analysis-34592 109 1.9483268261e-06`
数据在第一列中包含 URL,在第二列中包含相应的频率(相同 URL 出现的次数),最后在第三列中包含传输的字节数。首先,我只使用第 1 列和第 2 列进行此分析。共有 2,465 个 x 值或唯一 URL。
以下是我的代码
import os
import matplotlib.pyplot as plt
import numpy as np
import math
from numpy import *
import scipy
from scipy.interpolate import *
from scipy.stats import linregress
from scipy.optimize import curve_fit
file = open(filename1, 'r')
lines = file.readlines()
result =
x=[]
y=[]
for line in lines:
course,count,size = line.lstrip().rstrip('\n').split('\t')
if course not in result:
result[course] = int(count)
else:
result[course] += int(count)
file.close()
frequency = sorted(result.items(), key = lambda i: i[1], reverse= True)
x=[]
y=[]
i=0
for element in frequency:
x.append(element[0])
y.append(element[1])
z=[]
fig=plt.figure()
ax = fig.add_subplot(111)
z=np.arange(len(x))
print z
logA = [x*np.log(x) if x>=1 else 1 for x in z]
logB = np.log(y)
plt.plot(z, y, color = 'r')
plt.plot(z, np.poly1d(np.polyfit(logA, logB, 1))(z))
ax.set_yscale('symlog')
ax.set_xscale('symlog')
slope, intercept = np.polyfit(logA, logB, 1)
plt.xlabel("Pre_referer")
plt.ylabel("Popularity")
ax.set_title('Pre Referral URL Popularity distribution')
plt.show()
您会看到导入了很多库,因为我一直在使用其中的很多库,但我的实验都没有产生预期的结果。所以上面的代码正确地生成了排名图。可以看出,这是红线,但曲线中应该是最佳拟合线的蓝线在视觉上是不正确的。这是生成的图表。
这是我期待的图表。第二张图中的虚线是我以某种方式错误地绘制的。
关于如何解决此问题的任何想法?
【问题讨论】:
【参考方案1】:在对数刻度上沿直线下降的数据遵循y = c*x^(m)
形式的幂关系。通过取两边的对数,你得到你正在拟合的线性方程:
log(y) = m*log(x) + c
调用np.polyfit(log(x), log(y), 1)
提供m
和c
的值。然后,您可以使用这些值来计算 log_y_fit
的拟合值:
log_y_fit = m*log(x) + c
您想要根据原始数据绘制的拟合值是:
y_fit = exp(log_y_fit) = exp(m*log(x) + c)
所以,您遇到的两个问题是:
您正在使用原始 x 坐标计算拟合值,而不是 log(x) 坐标
您正在绘制拟合 y 值的对数,而没有将它们转换回原始比例
我在下面的代码中解决了这两个问题,将plt.plot(z, np.poly1d(np.polyfit(logA, logB, 1))(z))
替换为:
m, c = np.polyfit(logA, logB, 1) # fit log(y) = m*log(x) + c
y_fit = np.exp(m*logA + c) # calculate the fitted values of y
plt.plot(z, y_fit, ':')
这可以放在一行上:plt.plot(z, np.exp(np.poly1d(np.polyfit(logA, logB, 1))(logA)))
,但我发现这使得调试变得更加困难。
以下代码中的其他一些不同之处:
当您从 z
计算 logA
以过滤掉任何 z 是一个线性范围,只有第一个值是 z,这就是我的编码方式。
我不知道你为什么在logA
的列表理解中有术语x*log(x)
。这对我来说似乎是一个错误,所以我没有将它包含在答案中。
这段代码应该可以正常工作:
fig=plt.figure()
ax = fig.add_subplot(111)
z=np.arange(1, len(x)+1) #start at 1, to avoid error from log(0)
logA = np.log(z) #no need for list comprehension since all z values >= 1
logB = np.log(y)
m, c = np.polyfit(logA, logB, 1) # fit log(y) = m*log(x) + c
y_fit = np.exp(m*logA + c) # calculate the fitted values of y
plt.plot(z, y, color = 'r')
plt.plot(z, y_fit, ':')
ax.set_yscale('symlog')
ax.set_xscale('symlog')
#slope, intercept = np.polyfit(logA, logB, 1)
plt.xlabel("Pre_referer")
plt.ylabel("Popularity")
ax.set_title('Pre Referral URL Popularity distribution')
plt.show()
当我在模拟数据上运行它时,我得到以下图表:
注意事项:
线条左右两端的“扭结”是使用“symlog”的结果,它可以线性化非常小的值,如What is the difference between 'log' and 'symlog'? 的答案中所述。如果此数据绘制在“log-log”轴上,则拟合数据将是一条直线。
您可能还想阅读这个答案:https://***.com/a/3433503/7517724,它解释了如何使用加权来“更好地”拟合对数转换的数据。
【讨论】:
【参考方案2】:我想出了解决这个问题的另一种方法。分享这个,因为它可能会有所帮助。
fig=plt.figure()
ax = fig.add_subplot(111)
z=np.arange(len(x)) + 1
print z
print y
rank = [np.log10(i) for i in z]
freq = [np.log10(i) for i in y]
m, b, r_value, p_value, std_err = stats.linregress(rank, freq)
print "slope: ", m
print "r-squared: ", r_value**2
print "intercept:", b
plt.plot(rank, freq, 'o',color = 'r')
abline_values = [m * i + b for i in rank]
plt.plot(rank, abline_values)
这也基本上实现了目标。它使用统计模块。
【讨论】:
以上是关于python 2.7中对数刻度的最佳拟合线的主要内容,如果未能解决你的问题,请参考以下文章
Matplotlib 半对数图:当范围很大时,次要刻度线消失了