Kmeans聚类算法简介(有点枯燥)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Kmeans聚类算法简介(有点枯燥)相关的知识,希望对你有一定的参考价值。

参考技术A 1. Kmeans聚类算法简介

由于具有出色的速度和良好的可扩展性,Kmeans聚类算法算得上是最著名的聚类方法。Kmeans算法是一个重复移动类中心点的过程,把类的中心点,也称重心(centroids),移动到其包含成员的平均位置,然后重新划分其内部成员。k是算法计算出的超参数,表示类的数量;Kmeans可以自动分配样本到不同的类,但是不能决定究竟要分几个类。k必须是一个比训练集样本数小的正整数。有时,类的数量是由问题内容指定的。例如,一个鞋厂有三种新款式,它想知道每种新款式都有哪些潜在客户,于是它调研客户,然后从数据里找出三类。也有一些问题没有指定聚类的数量,最优的聚类数量是不确定的。后面我将会详细介绍一些方法来估计最优聚类数量。

Kmeans的参数是类的重心位置和其内部观测值的位置。与广义线性模型和决策树类似,Kmeans参数的最优解也是以成本函数最小化为目标。Kmeans成本函数公式如下:

μiμi是第kk个类的重心位置。成本函数是各个类畸变程度(distortions)之和。每个类的畸变程度等于该类重心与其内部成员位置距离的平方和。若类内部的成员彼此间越紧凑则类的畸变程度越小,反之,若类内部的成员彼此间越分散则类的畸变程度越大。求解成本函数最小化的参数就是一个重复配置每个类包含的观测值,并不断移动类重心的过程。首先,类的重心是随机确定的位置。实际上,重心位置等于随机选择的观测值的位置。每次迭代的时候,Kmeans会把观测值分配到离它们最近的类,然后把重心移动到该类全部成员位置的平均值那里。

2. K值的确定

2.1 根据问题内容确定

这种方法就不多讲了,文章开篇就举了一个例子。

2.2 肘部法则

如果问题中没有指定kk的值,可以通过肘部法则这一技术来估计聚类数量。肘部法则会把不同kk值的成本函数值画出来。随着kk值的增大,平均畸变程度会减小;每个类包含的样本数会减少,于是样本离其重心会更近。但是,随着kk值继续增大,平均畸变程度的改善效果会不断减低。kk值增大过程中,畸变程度的改善效果下降幅度最大的位置对应的kk值就是肘部。为了让读者看的更加明白,下面让我们通过一张图用肘部法则来确定最佳的kk值。下图数据明显可分成两类:

从图中可以看出,k值从1到2时,平均畸变程度变化最大。超过2以后,平均畸变程度变化显著降低。因此最佳的k是2。

2.3 与层次聚类结合

经常会产生较好的聚类结果的一个有趣策略是,首先采用层次凝聚算法决定结果粗的数目,并找到一个初始聚类,然后用迭代重定位来改进该聚类。

2.4 稳定性方法

稳定性方法对一个数据集进行2次重采样产生2个数据子集,再用相同的聚类算法对2个数据子集进行聚类,产生2个具有kk个聚类的聚类结果,计算2个聚类结果的相似度的分布情况。2个聚类结果具有高的相似度说明kk个聚类反映了稳定的聚类结构,其相似度可以用来估计聚类个数。采用次方法试探多个kk,找到合适的k值。

2.5 系统演化方法

系统演化方法将一个数据集视为伪热力学系统,当数据集被划分为kk个聚类时称系统处于状态kk。系统由初始状态k=1k=1出发,经过分裂过程和合并过程,系统将演化到它的稳定平衡状态 kiki ,其所对应的聚类结构决定了最优类数 kiki 。系统演化方法能提供关于所有聚类之间的相对边界距离或可分程度,它适用于明显分离的聚类结构和轻微重叠的聚类结构。

2.6 使用canopy算法进行初始划分

基于Canopy Method的聚类算法将聚类过程分为两个阶段

(1) 聚类最耗费计算的地方是计算对象相似性的时候,Canopy Method在第一阶段选择简单、计算代价较低的方法计算对象相似性,将相似的对象放在一个子集中,这个子集被叫做Canopy,通过一系列计算得到若干Canopy,Canopy之间可以是重叠的,但不会存在某个对象不属于任何Canopy的情况,可以把这一阶段看做数据预处理;

(2) 在各个Canopy内使用传统的聚类方法(如Kmeans),不属于同一Canopy的对象之间不进行相似性计算。

从这个方法起码可以看出两点好处:首先,Canopy不要太大且Canopy之间重叠的不要太多的话会大大减少后续需要计算相似性的对象的个数;其次,类似于Kmeans这样的聚类方法是需要人为指出K的值的,通过(1)得到的Canopy个数完全可以作为这个k值,一定程度上减少了选择k的盲目性。

其他方法如贝叶斯信息准则方法(BIC)可参看文献[4]。

3. 初始质心的选取

选择适当的初始质心是基本kmeans算法的关键步骤。常见的方法是随机的选取初始中心,但是这样簇的质量常常很差。处理选取初始质心问题的一种常用技术是:多次运行,每次使用一组不同的随机初始质心,然后选取具有最小SSE(误差的平方和)的簇集。这种策略简单,但是效果可能不好,这取决于数据集和寻找的簇的个数。

第二种有效的方法是,取一个样本,并使用层次聚类技术对它聚类。从层次聚类中提取kk个簇,并用这些簇的质心作为初始质心。该方法通常很有效,但仅对下列情况有效:(1)样本相对较小,例如数百到数千(层次聚类开销较大);(2) kk相对于样本大小较小。

第三种选择初始质心的方法,随机地选择第一个点,或取所有点的质心作为第一个点。然后,对于每个后继初始质心,选择离已经选取过的初始质心最远的点。使用这种方法,确保了选择的初始质心不仅是随机的,而且是散开的。但是,这种方法可能选中离群点。此外,求离当前初始质心集最远的点开销也非常大。为了克服这个问题,通常该方法用于点样本。由于离群点很少(多了就不是离群点了),它们多半不会在随机样本中出现。计算量也大幅减少。

第四种方法就是上面提到的canopy算法。

4. 距离的度量

常用的距离度量方法包括:欧几里得距离和余弦相似度。两者都是评定个体间差异的大小的。

欧氏距离是最常见的距离度量,而余弦相似度则是最常见的相似度度量,很多的距离度量和相似度度量都是基于这两者的变形和衍生,所以下面重点比较下两者在衡量个体差异时实现方式和应用环境上的区别。

借助三维坐标系来看下欧氏距离和余弦相似度的区别:

从图上可以看出距离度量衡量的是空间各点间的绝对距离,跟各个点所在的位置坐标(即个体特征维度的数值)直接相关;而余弦相似度衡量的是空间向量的夹角,更加的是体现在方向上的差异,而不是位置。如果保持A点的位置不变,B点朝原方向远离坐标轴原点,那么这个时候余弦相似cosθ是保持不变的,因为夹角不变,而A、B两点的距离显然在发生改变,这就是欧氏距离和余弦相似度的不同之处。

根据欧氏距离和余弦相似度各自的计算方式和衡量特征,分别适用于不同的数据分析模型:欧氏距离能够体现个体数值特征的绝对差异,所以更多的用于需要从维度的数值大小中体现差异的分析,如使用用户行为指标分析用户价值的相似度或差异;而余弦相似度更多的是从方向上区分差异,而对绝对的数值不敏感,更多的用于使用用户对内容评分来区分用户兴趣的相似度和差异,同时修正了用户间可能存在的度量标准不统一的问题(因为余弦相似度对绝对数值不敏感)。

因为欧几里得距离度量会受指标不同单位刻度的影响,所以一般需要先进行标准化,同时距离越大,个体间差异越大;空间向量余弦夹角的相似度度量不会受指标刻度的影响,余弦值落于区间[-1,1],值越大,差异越小。但是针对具体应用,什么情况下使用欧氏距离,什么情况下使用余弦相似度?

从几何意义上来说,n维向量空间的一条线段作为底边和原点组成的三角形,其顶角大小是不确定的。也就是说对于两条空间向量,即使两点距离一定,他们的夹角余弦值也可以随意变化。感性的认识,当两用户评分趋势一致时,但是评分值差距很大,余弦相似度倾向给出更优解。举个极端的例子,两用户只对两件商品评分,向量分别为(3,3)和(5,5),这两位用户的认知其实是一样的,但是欧式距离给出的解显然没有余弦值合理。

5. 聚类效果评估

我们把机器学习定义为对系统的设计和学习,通过对经验数据的学习,将任务效果的不断改善作为一个度量标准。Kmeans是一种非监督学习,没有标签和其他信息来比较聚类结果。但是,我们还是有一些指标可以评估算法的性能。我们已经介绍过类的畸变程度的度量方法。本节为将介绍另一种聚类算法效果评估方法称为轮廓系数(Silhouette Coefficient)。轮廓系数是类的密集与分散程度的评价指标。它会随着类的规模增大而增大。彼此相距很远,本身很密集的类,其轮廓系数较大,彼此集中,本身很大的类,其轮廓系数较小。轮廓系数是通过所有样本计算出来的,计算每个样本分数的均值,计算公式如下:

aa是每一个类中样本彼此距离的均值,bb是一个类中样本与其最近的那个类的所有样本的距离的均值。

6. Kmeans算法流程

输入:聚类个数k,数据集XmxnXmxn。 

输出:满足方差最小标准的k个聚类。

(1) 选择k个初始中心点,例如c[0]=X[0] , … , c[k-1]=X[k-1];

(2) 对于X[0]….X[n],分别与c[0]…c[k-1]比较,假定与c[i]差值最少,就标记为i;

(3) 对于所有标记为i点,重新计算c[i]= 所有标记为i的样本的每个特征的均值;

(4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值或者达到最大迭代次数。

Kmeans的时间复杂度:O(tkmn),空间复杂度:O((m+k)n)。其中,t为迭代次数,k为簇的数目,m为样本数,n为特征数。

7. Kmeans算法优缺点

7.1 优点

(1). 算法原理简单。需要调节的超参数就是一个k。

(2). 由具有出色的速度和良好的可扩展性。

7.2 缺点

(1). 在 Kmeans 算法中 kk 需要事先确定,这个 kk 值的选定有时候是比较难确定。

(2). 在 Kmeans 算法中,首先需要初始k个聚类中心,然后以此来确定一个初始划分,然后对初始划分进行优化。这个初始聚类中心的选择对聚类结果有较大的影响,一旦初始值选择的不好,可能无法得到有效的聚类结果。多设置一些不同的初值,对比最后的运算结果,一直到结果趋于稳定结束。

(3). 该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大的。

(4). 对离群点很敏感。

(5). 从数据表示角度来说,在 Kmeans 中,我们用单个点来对 cluster 进行建模,这实际上是一种最简化的数据建模形式。这种用点来对 cluster 进行建模实际上就已经假设了各 cluster的数据是呈圆形(或者高维球形)或者方形等分布的。不能发现非凸形状的簇。但在实际生活中,很少能有这种情况。所以在 GMM 中,使用了一种更加一般的数据表示,也就是高斯分布。

(6). 从数据先验的角度来说,在 Kmeans 中,我们假设各个 cluster 的先验概率是一样的,但是各个 cluster 的数据量可能是不均匀的。举个例子,cluster A 中包含了10000个样本,cluster B 中只包含了100个。那么对于一个新的样本,在不考虑其与A cluster、 B cluster 相似度的情况,其属于 cluster A 的概率肯定是要大于 cluster B的。

(7). 在 Kmeans 中,通常采用欧氏距离来衡量样本与各个 cluster 的相似度。这种距离实际上假设了数据的各个维度对于相似度的衡量作用是一样的。但在 GMM 中,相似度的衡量使用的是后验概率 αcG(x|μc,∑c)αcG(x|μc,∑c) ,通过引入协方差矩阵,我们就可以对各维度数据的不同重要性进行建模。

(8). 在 Kmeans 中,各个样本点只属于与其相似度最高的那个 cluster ,这实际上是一种 hard clustering 。

针对Kmeans算法的缺点,很多前辈提出了一些改进的算法。例如 K-modes 算法,实现对离散数据的快速聚类,保留了Kmeans算法的效率同时将Kmeans的应用范围扩大到离散数据。还有K-Prototype算法,可以对离散与数值属性两种混合的数据进行聚类,在K-prototype中定义了一个对数值与离散属性都计算的相异性度量标准。当然还有其它的一些算法,这里我 就不一一列举了。

Kmeans 与 GMM 更像是一种 top-down 的思想,它们首先要解决的问题是,确定 cluster 数量,也就是 k 的取值。在确定了 k 后,再来进行数据的聚类。而 hierarchical clustering 则是一种 bottom-up 的形式,先有数据,然后通过不断选取最相似的数据进行聚类。

全面解析 Kmeans 聚类算法(Python)


作者 | 泳鱼

来源 | 算法进阶

一、聚类简介

Clustering (聚类)是常见的unsupervised learning (无监督学习)方法,简单地说就是把相似的数据样本分到一组(簇),聚类的过程,我们并不清楚某一类是什么(通常无标签信息),需要实现的目标只是把相似的样本聚到一起,即只是利用样本数据本身的分布规律。

聚类算法可以大致分为传统聚类算法及深度聚类算法

  • 传统聚类算法主要是根据原特征+基于划分/密度/层次等方法。

  • 深度聚类方法主要是根据表征学习后的特征+传统聚类算法。

二、kmeans聚类原理

kmeans聚类可以说是聚类算法中最为常见的,它是基于划分方法聚类的,原理是先初始化k个簇类中心,基于计算样本与中心点的距离归纳各簇类下的所属样本,迭代实现样本与其归属的簇类中心的距离为最小的目标(如下目标函数)。

其优化算法步骤为:

1.随机选择 k 个样本作为初始簇类中心(k为超参,代表簇类的个数。可以凭先验知识、验证法确定取值);

2.针对数据集中每个样本 计算它到 k 个簇类中心的距离,并将其归属到距离最小的簇类中心所对应的类中;

3.针对每个簇类,重新计算它的簇类中心位置;

4.重复迭代上面 2 、3 两步操作,直到达到某个中止条件(如迭代次数,簇类中心位置不变等)。

.... 完整代码可见:https://github.com/aialgorithm/Blog 或文末阅读原文

#kmeans算法是初始化随机k个中心点
random.seed(1)
center = [[self.data[i][r] for i in range(1, len((self.data)))]  
                      for r in random.sample(range(len(self.data)), k)]

#最大迭代次数iters
for i in range(self.iters):
    class_dict = self.count_distance() #计算距离,比较个样本到各个中心的的出最小值,并划分到相应的类
    self.locate_center(class_dict) # 重新计算中心点
    #print(self.data_dict)
    print("----------------迭代%d次----------------"%i)
    print(self.center_dict)  #聚类结果k:center:[],distance:item:0.0,classify:[]
    if sorted(self.center) == sorted(self.new_center):
        break
    else:
        self.center = self.new_center
...

可见,Kmeans 聚类的迭代算法实际上是 EM 算法,EM 算法解决的是在概率模型中含有无法观测的隐含变量情况下的参数估计问题。

在 Kmeans 中的隐变量是每个类别所属类别。Kmeans 算法迭代步骤中的 每次确认中心点以后重新进行标记 对应 EM 算法中的 E 步 求当前参数条件下的 Expectation 。而 根据标记重新求中心点 对应 EM 算法中的 M 步 求似然函数最大化时(损失函数最小时)对应的参数 。EM 算法的缺点是容易陷入局部极小值,这也是 Kmeans 有时会得到局部最优解的原因。

三、选择距离度量

kmeans 算法是基于距离相似度计算的,以确定各样本所属的最近中心点,常用距离度量有曼哈顿距离和欧式距离,具体可以见文章【全面归纳距离和相似度方法(7种)】

  • 曼哈顿距离 公式:

  • 欧几里得距离 公式:

曼哈顿、欧几里得距离的计算方法很简单,就是计算两样本(x,y)的各个特征i间的总距离。如下图(二维特征的情况)蓝线的距离即是曼哈顿距离(想象你在曼哈顿要从一个十字路口开车到另外一个十字路口实际驾驶距离就是这个“曼哈顿距离”,也称为城市街区距离),红线为欧几里得距离:

四、k 值的确定

kmeans划分k个簇,不同k的情况,算法的效果可能差异就很大。K值的确定常用:先验法、手肘法等方法。

  • 先验法

先验比较简单,就是凭借着业务知识确定k的取值。比如对于iris花数据集,我们大概知道有三种类别,可以按照k=3做聚类验证。从下图可看出,对比聚类预测与实际的iris种类是比较一致的。

  • 手肘法

可以知道k值越大,划分的簇群越多,对应的各个点到簇中心的距离的平方的和(类内距离,WSS)越低,我们通过确定WSS随着K的增加而减少的曲线拐点,作为K的取值。

手肘法的缺点在于需要人为判断不够自动化,还有些其他方法如:

  • 使用 Gap statistic 方法,确定k值。

  • 验证不同K值的平均轮廓系数,越趋近1聚类效果越好。

  • 验证不同K值的类内距离/类间距离,值越小越好。

  • ISODATA算法:它是在k-均值算法的基础上,增加对聚类结果的“合并”和“分裂”两个操作,确定最终的聚类结果。从而不用人为指定k值。

五、Kmeans的缺陷

5.1 初始化中心点的问题

kmeans是采用随机初始化中心点,而不同初始化的中心点对于算法结果的影响比较大。所以,针对这点更新出了Kmeans++算法,其初始化的思路是:各个簇类中心应该互相离得越远越好。基于各点到已有中心点的距离分量,依次随机选取到k个元素作为中心点。离已确定的簇中心点的距离越远,越有可能(可能性正比与距离的平方)被选择作为另一个簇的中心点。如下代码。

# Kmeans ++ 算法基于距离概率选择k个中心点
            # 1.随机选择一个点
            center = []
            center.append(random.choice(range(len(self.data[0]))))
            # 2.根据距离的概率选择其他中心点
            for i in range(self.k - 1):
                weights = [self.distance_closest(self.data[0][x], center) 
                         for x in range(len(self.data[0])) if x not in center]
                dp = [x for x in range(len(self.data[0])) if x not in center]
                total = sum(weights)
                #基于距离设定权重
                weights = [weight/total for weight in weights]
                num = random.random()
                x = -1
                i = 0
                while i < num :
                    x += 1
                    i += weights[x]
                center.append(dp[x])
            center = [self.data_dict[self.data[0][center[k]]] for k in range(len(center))]

5.2 核Kmeans

基于欧式距离的 Kmeans 假设了了各个数据簇的数据具有一样的的先验概率并呈现球形分布,但这种分布在实际生活中并不常见。面对非凸的数据分布形状时我们可以引入核函数来优化,这时算法又称为核 Kmeans 算法,是核聚类方法的一种。核聚类方法的主要思想是通过一个非线性映射,将输入空间中的数据点映射到高位的特征空间中,并在新的特征空间中进行聚类。非线性映射增加了数据点线性可分的概率,从而在经典的聚类算法失效的情况下,通过引入核函数可以达到更为准确的聚类结果。

5.3 特征类型

kmeans是面向数值型的特征,对于类别特征需要进行onehot或其他编码方法。此外还有 K-Modes 、K-Prototypes 算法可以用于混合类型数据的聚类,对于数值特征簇类中心我们取得是各特征均值,而类别型特征中心取得是众数,计算距离采用海明距离,一致为0否则为1。

5.4 特征的权重

聚类是基于特征间距离计算,计算距离时,需要关注到特征量纲差异问题,量纲越大意味这个特征权重越大。假设各样本有年龄、工资两个特征变量,如计算欧氏距离的时候,(年龄1-年龄2)² 的值要远小于(工资1-工资2)² ,这意味着在不使用特征缩放的情况下,距离会被工资变量(大的数值)主导。因此,我们需要使用特征缩放来将全部的数值统一到一个量级上来解决此问题。通常的解决方法可以对数据进行“标准化”或“归一化”,对所有数值特征统一到标准的范围如0~1。

归一化后的特征是统一权重,有时我们需要针对不同特征赋予更大的权重。假设我们希望feature1的权重为1,feature2的权重为2,则进行0~1归一化之后,在进行类似欧几里得距离(未开根号)计算的时候,我们将feature2的值乘根号2就可以了,这样feature2对应的上式的计算结果会增大2倍,从而简单快速的实现权重的赋权。如果使用的是曼哈顿距离,特征直接乘以2 权重也就是2 。

如果类别特征进行embedding之后的特征加权,比如embedding为256维,则我们对embedding的结果进行0~1归一化之后,每个embedding维度都乘以 根号1/256,从而将这个类别全部的距离计算贡献规约为1,避免embedding size太大使得kmeans的聚类结果非常依赖于embedding这个本质上是单一类别维度的特征。

5.5 特征的选择

kmeans本质上只是根据样本特征间的距离(样本分布)确定所属的簇类。而不同特征的情况,就会明显影响聚类的结果。当使用没有代表性的特征时,结果可能就和预期大相径庭!比如,想对银行客户质量进行聚类分级:交易次数、存款额度就是重要的特征,而如客户性别、年龄情况可能就是噪音,使用了性别、年龄特征得到的是性别、年龄相仿的客户!

对于无监督聚类的特征选择:

  • 一方面可以结合业务含义,选择贴近业务场景的特征。

  • 另一方面,可以结合缺失率、相似度、PCA等常用的特征选择(降维)方法可以去除噪音、减少计算量以及避免维度爆炸。再者,如果任务有标签信息,结合特征对标签的特征重要性也是种方法(如xgboost的特征重要性,特征的IV值。)

  • 最后,也可以通过神经网络的特征表示(也就深度聚类的思想。后面在做专题介绍),如可以使用word2vec,将高维的词向量空间以低维的分布式向量表示。

参考文献: 

1、https://www.bilibili.com/video/BV1H3411t7Vk?spm_id_from=333.999.0.0 

2、https://zhuanlan.zhihu.com/p/407343831 

3、https://zhuanlan.zhihu.com/p/78798251

技术

用python制作酷炫的可视化大屏

资讯

商汤科技上市,开启AI新篇章

技术

2021年有用的数据清洗python库

资讯

这个AI模型火上GitHub热榜

分享

点收藏

点点赞

点在看

以上是关于Kmeans聚类算法简介(有点枯燥)的主要内容,如果未能解决你的问题,请参考以下文章

Kmeans聚类算法简介

聚类-KMeans算法(图解算法原理)

聚类-KMeans算法(图解算法原理)

聚类算法kmeans

机器学习sklearn19.0聚类算法——Kmeans算法

聚类算法 - kmeans