干货 利用SPSS进行高级统计分析第二期

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了干货 利用SPSS进行高级统计分析第二期相关的知识,希望对你有一定的参考价值。

参考技术A Hello,

这里是 行上行下 ,我是 喵君姐姐 ~

在上一期中,我们为大家带来了 利用SPSS软件进行高级统计分析的实操教程第一期 ,内容包括: 描述性统计表格模板、卡方&T检验、相关&回归分析 等。

在本期中,我们继续为大家介绍如何利用SPSS进行:中介、多重中介、链式中介、调节分析、有中介的调节分析等。

PS: 后台回复关键词 “高级统计” 即可获得所述的PDF原文啦!

一、中介【报告B,SE,t(df),p),置信区间,画中介效应图】

1.回归方程法

1.1 算三个回归方程

1) 自—因

2) 自—中

3) 自、中—因

1.2 数据分析

2. Process插件法:Model4

部分标准化

效应量/Y的标准差

完全标准化

所有变量的标准化

3. 报告【B、SE、t(df)、P、置信区间+图(标准化系数)】

本研究采用软件SPSS 24.0 中文版进行采集录入和统计分析实验数据。中介效应检验:参照Preacher 和Hayes (2004)提出的Bootstrap 方法进行中介效应检验(模型4),样本量选择5000,在95%置信区间下。

为了探讨MIL和FCI的关系中是否存在PA的中介作用,本研究以MIL得分为自变量,FCI得分为因变量,PA得分为中介变量进行中介效应检验。结果表明,PA在MIL和FCI之间起着中介作用。

MIL对PA有显著的预测作用(B=0.24,SE=0.07,t(98)=3.55,p < 0.001),置信区间(LLCT = 0.10,ULCT =0.37)不包含0; 中介检验的结果不包含0( LLCT = 0.07 , ULCT = 0.37) ,表明 P A 的中介效应显著(中介效应大小为0.22,S E =0.08) ,中介效应如图所示。

参考文献:Preacher, K. J. , & Hayes, A. F. . (2004). Spss and sas procedures for estimating indirect effects in simple mediation models.  Behavior Research Methods, Instruments & Computers,   36 (4), p.717-731.

二、多重中介

1. Process插件法:model4

三、链式中介

1. Process插件法:model6

中心化:原始数据-均值

拆分文件:spilt

四、调节【报告B、SE、t、β、p、95%CI、Δ+画回归表、交互作用图】

1. 线性回归法

1.1 S pss操作

1)算z分数

2)算交互项

3)算回归方程

1.2  S pss结果解读

1.3  画交互作用图:对调节变量做高低分组

高分组:平均值+标准差=6.12

低分组:平均值—标准差=3.68

1.4 拆分文件,做回归

1.5 再做一次回归,画图

2. Process插件法:model1

2.1 S pss操作

2.2 S pss结果解读

2.3 报告

利用Process model 1 (Hayes,2018)探讨生命意义感P、社会支持以及二者的交互作用与工作倦怠的关系。

结果表明, 生命意义感P (B = -0.46, t = -1.35, p = 0.18 )、 社会支持 (B = -0.19, t = -0.55, p =0.58 )以及二者交互作用(B = 0.05, t = 0.83, p =0.41 ) 对工作倦怠的作用 均不显著 (如表3所示),简单斜率分析图如图2所示。

图 2简单斜率效应分析图

五、有调节的中介【报告B、SE、β、p、95%CI+画回归表+交互作用图】

1.线性回归法

1.1 算两组交互项 自*调 中*调

1) 自、调、自*调—因

2) 自、调、自*调—中

3) 自、调、自*调、中、中*调—因

1.2 报告

接下来验证有调节的中介作用,以压力为自变量,生命意义感P为调节变量,自我效能感为中介变量,深层劳动为因变量为例。

根据温忠麟和叶宝娟(2014)的观点,检验有调节的中介模型需要对三个回归方程的参数进行检验:(1)方程1 估计调节变量(生命意义感P)对自变量(压力)与因变量(深层劳动)之间关系的调节效应; (2)方程2 估计调节变量(生命意义感P)对自变量(压力)与中介变量(自我效能感)之间关系的调节效应; (3)方程3 估计调节变量(生命意义感P)对中介变量(自我效能感)与因变量(深层劳动)之间关系的调节效应以及自变量(压力)对因变量(深层劳动)残余效应的调节效应。

根据Muller, Judd 和Yzerbyt (2005)的观点, 如果模型满足以下两个条件则说明有调节的中介效应存在:(1)方程1 中, 压力的总效应显著, 且该效应的大小不取决于生命意义感P; (2)方程2 和方程3 中, 压力对自我效能感的效应显著, 生命意义感P与自我效能感对深层劳动的交互效应显著, 和/或压力与生命意义感P对自我效能感的交互效应显著, 自我效能感对深层劳动的效应显著,本研究中有调节的中介模型检验结果见表2、图3。

由表2、图1可见,方程1 中压力负向预测深层劳动(β=-0.37,p<0.001),压力与生命意义感P的交互项对深层劳动的预测作用显著(β=-0.23,p<0.001)。

方程2 和方程3 中,压力与生命意义感P的交互项对自我效能感的预测效应显著(β=-0.18,p<0.01);压力与生命意义感P的交互项对深层劳动的预测作用显著(β=-0.18,p<0.01);同时自我效能感对深层劳动的预测效应显著(β=0.53,p<0.001)。

这表明, 压力、生命意义感P、自我效能感和深层劳动四者之间构成了有调节的中介效应模型 , 自我效能感在压力与深层劳动之间具有中介作用 , 生命意义感P 在 压力与深层劳动、压力与自我效能感间起调节作用 。

表2 压力对深层劳动有调节的中介效应检验(以生命意义感P为调节变量、自我效能感为中介变量)

图 3压力对深层劳动有调节的中介效应图(中介变量为自我效能感,调节变量为生命意义感P)

参考文献:

温忠麟, & 叶宝娟. (2014). 中介效应分析:方法和模型发展.  心理科学进展,   022 (005), 731-745.

由于生命意义感P在压力与深层劳动、压力与自我效能感间起调节作用,因此需要进一步检验简单效应以明确生命意义感P调节作用。

首先将生命意义感P按照正负一个标准差分成高、低组, 采用简单斜率检验考察在生命意义感P不同水平上压力对深层劳动、压力对自我效能感的影响,相应的简单效应分析见图5、图6。

图5结果表明,对于 生命意义感P 较 高 的个体 来说,压力能负向预测深层劳动( B= -0.44, SE = 0.13,  p <0.01 ) ;而对于生命意义感P较低的个体来说,压力不能显著预测深层劳动(B =0.09, SE = 0.11,p = 0.45),即 比起低压力情景,高生命意义感P的个体在高压情景下,会有更少的深层劳动。

图 5生命意义感P对压力与深层劳动之间的关系调节作用

图6结果表明,对于生命意义感P较低的个体来说,压力不能预测自我效能感(B = -0.19,SE =0.13,p =0.17);而对于 生命意义感P较高的个体来说 , 压力能负向预测深层劳动( B =-0.45 , SE = 0.13 , p  <0.01) ;即比起低压力情景时, 高生命意义感P的个体在高压情景下自我效能感更低。

图 6生命意义感P对压力与自我效能感之间的关系调节作用

2.  Process插件法

2.1 调节前半路径:model7

1)Spss操作

2) Spss结果解读

2.2 调节后半路径:model14

1) Spss操作

2)Spss结果解读

2.3 探索前后:model57

2.4 报告

使用Hayes (2019)的SPSS 宏程序PROCESS(Model7),分析自我效能感在压力与深层劳动之间的中介作用(前半段)是否受生命意义感P的调节。

结果表明(如表4所示): 自我效能感显著正向预测深层劳动(B= 0.37 ,S E =0.0 4 ,p< 0.001 ) ; 压力与生命意义感P的交互项能显著负向预测自我效能感(B=-0.02,S E =0.01,p< 0.01 ) 。

表4:生命意义感P调节自我效能感在压力与深层劳动之间中介作用的回归分析

在生命意义感P得分为平均数减一个标准差、平均数以及平均数加一个标准差三个水平时,自我效能感在压力与深层劳动之间的中介效应值及其95%Bootstrap 置信区间如表5所示。

综合以上结果,本研究提出的有调节的中介模型得到了支持。 自我效能感 在 压力与深层劳动之间起中介作用, 而且该中介作用 前 半段 受到生命意义感P的调节。

表5:不同生命意义感P水平时压力与自我效能感之间的关系

生命意义感P水平中介效应值Boot标准误Bootstrap下限Bootstrap上限

M-SD-0.09 *** 0.03-0.16-0.04

M-0.13 *** 0.03-0.19-0.08

M+SD-0.17 *** 0.03-0.24-0.11

注: *** p<0.001

进一步采用简单斜率检验来分析生命意义感P在压力与自我效能感关系中的调节作用。按生命意义感P的平均分加减一个标准差将被试分为高生命意义感P水平组(高于平均数加一个标准差的被试)、低生命意义感P水平组(低于平均数减一个标准差的被试)与中生命意义感P水平组(介于两组之间的被试)三组,采用分组回归的方式考察压力与自我效能感的关系,结果如图所示: 随着 生命意义感P水平的升高 ,  压力 对 自我效能感 的负向预测作用逐渐 变强 (由B=-0.09 , p < 0.001 减弱为B=-0.17,p < 0.001)。

matlab和spss啥区别和联系?

这两个软件都可以做统计分析吧,哪个容易用些,哪个绘图漂亮?
两个我都完全不会,只是现在要做数据分析,可能要用小波和神经网络,模糊数学等等,请大家推荐介绍下,谢谢!

联系:两者都是用来进行数据统计分析的软件,区别如下:

一、开发公司不同

1、matlab:是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

2、spss:为IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称,有Windows和Mac OS X等版本。

二、特点不同

1、matlab:具有完备的图形处理功能,实现计算结果和编程的可视化;高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。

2、spss:是世界上最早采用图形菜单驱动界面的统计软件,它最突出的特点就是操作界面极为友好,输出结果美观漂亮。


三、功能不同

1、matlab:可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

2、spss:基本功能包括数据管理、统计分析、图表分析、输出管理等等。SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化。


参考资料来源:百度百科-MATLAB

参考资料来源:百度百科-spss

参考技术A

matlab和spss区别为:开发者不同、功能不同、用途不同。matlab和spss都是数学分析软件,可以进行数据分析,都可应用于经济学、数学、统计学等领域。

一、开发者不同

1、matlab:matlab是美国MathWorks公司出品的商业数学分析软件。

2、spss:spss的为。是由美国斯坦福大学的三位研究生Norman H. Nie、C. Hadlai (Tex) Hull 和 Dale H. Bent于1968年研究开发成功的统计数学分析软件。

二、功能不同

1、matlab:matlab的功能为可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。

2、spss:spss的功能为数据管理、统计分析、图表分析、输出管理等。

三、用途不同

1、matlab:matlab主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

2、spss:spss应用于经济学、数学、统计学、物流管理、生物学、心理学、地理学、医疗卫生、体育、农业、林业、商业等各个领域。

参考技术B matlab主要是用来作数值计算的,得靠自己编程进行统计,编程强的话可以用。spss是专业的统计学软件,是窗口化操作一般不需要自己编程(软件内部有现成的程序)操作简单。
绘图方面spss更好,分析的也更细致。
我建议你先用spss试试,如果不行还可以用SAS(也是专业的统计学软件),最好别用matlab作统计。我是数学专业的一般用spss做统计。本回答被提问者采纳

以上是关于干货 利用SPSS进行高级统计分析第二期的主要内容,如果未能解决你的问题,请参考以下文章

通知 | 2018政务大数据理论与实践高级研修班(第二期)即将开班!

SPSS统计分析高级教程的目录

spss软件聚类分析怎么用,从输入数据到结果,树状图结果。整个操作怎么进行。需要基本思路。

spss软件聚类分析怎么用,从输入数据到结果,树状图结果。整个操作怎么进行。需要基本思路。

干货超全数据分析资料免费下载!(包括SQL,R语言,SPSS,SAS,python,数据分析和数据挖掘)

matlab和spss啥区别和联系?