caffe源码剖析之Blob
Posted yunpiao123456
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了caffe源码剖析之Blob相关的知识,希望对你有一定的参考价值。
2.Blob结构:
Blob数据结构是caffe中基本的数据存储单元,它主要存储的数据是网络中的中间数据变量,比如各层的输入和输出;代价函数关于网络各层参数的梯度。为什么要专门为数据设计一个存储结构,我的理解是这样保证的网络中的数据存储结构的统一性,由于网络中每个网络的计算过程都是相似的,所以如果能把数据存储也统一起来,使得整个程序也就很有结构。
1,Blob中除了存储重要的数据之外,还有一些标记数据的参数,下面就罗列一下Blob中的数据成员:
[cpp] view plain copy print ?- protected:
- shared_ptr<SyncedMemory> data_;
- shared_ptr<SyncedMemory> diff_;
- shared_ptr<SyncedMemory> shape_data_;
- vector<int> shape_;
- int count_;
- int capacity_;
diff_:表示代价函数相对于各层参数的梯度;
shape_:是一个可变数组,shape_中主要存储4个变量:num表示一个batch中的样本数量,从这我们可以看出Blob的存储是以batch为基本单位的;chennels表示对应层的通道,比如卷积层有20个卷积核,channels的值就是20;height和width就表示单个数据的尺寸,可能是一副图像的尺寸,也可能表示卷积核的尺寸,在每一层所代表的含义也不相同。
count_:表示这个Blob里已经存储的元素的个数;
capacity_:表示这个Blob的容量;
网上说可以把Blob看作一个四维的数组,其实是可以从这个角度看,但是本质上Blob还是一维的存储结构,只不过是利用四个参数来进行寻址(shape_里的四个参数)。所以说Blob其实并不是含有什么复杂的结构。
2,Blob中除了数据成员之外,也有很多用于操作数据的函数成员,下面就说几个比较重要的:
void Blob<Dtype>::Reshape():这个函数是在原来分配的内存不够的情况下重新分配内存。
const Dtype* Blob<Dtype>::cpu_data():这个是获取Blob结构体中的data_数据的指针,同时限制不能对返回的指针指向的内容进行更改。
const Dtype* Blob<Dtype>::cpu_diff():这个是获取Blob结构体中的diff_数据的指针,同时限制不能对返回的指针指向的内容进行更改。
Dtype* Blob<Dtype>::mutable_cpu_data():获取Blob结构体中的data_数据的指针,同时可以对指针指向的内容更改。
Dtype* Blob<Dtype>::mutable_cpu_diff():获取Blob结构体中的diff_数据的指针,同时可以对指针指向的内容更改。
void Blob<Dtype>::ShareData(const Blob& other):让其他Blob的data_数据和当前Blob共享。
void Blob<Dtype>::ShareDiff(const Blob& other):让其他Blob的diff_和当前的Blob共享。
这就是关于Blob的主要内容,关于Blob中的SyncedMemory数据类型,这里不深究,现在只知道data_和diff_都是使用这种数据类型构造数据。
#ifndef CAFFE_BLOB_HPP_
#define CAFFE_BLOB_HPP_
#include <algorithm>
#include <string>
#include <vector>
#include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/syncedmem.hpp"
const int kMaxBlobAxes = 32;
namespace caffe
/**
* @brief A wrapper around SyncedMemory holders serving as the basic
* computational unit through which Layer%s, Net%s, and Solver%s
* interact.
*
* TODO(dox): more thorough description.
*/
template <typename Dtype>
class Blob
public:
Blob()
: data_(), diff_(), count_(0), capacity_(0)
/// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
explicit Blob(const int num, const int channels, const int height,
const int width);
explicit Blob(const vector<int>& shape);
/// @brief Deprecated; use <code>Reshape(const vector<int>& shape)</code>.
void Reshape(const int num, const int channels, const int height,
const int width);
/**
* @brief Change the dimensions of the blob, allocating new memory if
* necessary.
*
* This function can be called both to create an initial allocation
* of memory, and to adjust the dimensions of a top blob during Layer::Reshape
* or Layer::Forward. When changing the size of blob, memory will only be
* reallocated if sufficient memory does not already exist, and excess memory
* will never be freed.
*
* Note that reshaping an input blob and immediately calling Net::Backward is
* an error; either Net::Forward or Net::Reshape need to be called to
* propagate the new input shape to higher layers.
*/
void Reshape(const vector<int>& shape);
void Reshape(const BlobShape& shape);
void ReshapeLike(const Blob& other);
inline string shape_string() const
ostringstream stream;
for (int i = 0; i < shape_.size(); ++i)
stream << shape_[i] << " ";
stream << "(" << count_ << ")";
return stream.str();
inline const vector<int>& shape() const return shape_;
/**
* @brief Returns the dimension of the index-th axis (or the negative index-th
* axis from the end, if index is negative).
*
* @param index the axis index, which may be negative as it will be
* "canonicalized" using CanonicalAxisIndex.
* Dies on out of range index.
*/
inline int shape(int index) const
return shape_[CanonicalAxisIndex(index)];
inline int num_axes() const return shape_.size();
inline int count() const return count_;
/**
* @brief Compute the volume of a slice; i.e., the product of dimensions
* among a range of axes.
*
* @param start_axis The first axis to include in the slice.
*
* @param end_axis The first axis to exclude from the slice.
*/
inline int count(int start_axis, int end_axis) const
CHECK_LE(start_axis, end_axis);
CHECK_GE(start_axis, 0);
CHECK_GE(end_axis, 0);
CHECK_LE(start_axis, num_axes());
CHECK_LE(end_axis, num_axes());
int count = 1;
for (int i = start_axis; i < end_axis; ++i)
count *= shape(i);
return count;
/**
* @brief Compute the volume of a slice spanning from a particular first
* axis to the final axis.
*
* @param start_axis The first axis to include in the slice.
*/
inline int count(int start_axis) const
return count(start_axis, num_axes());
/**
* @brief Returns the 'canonical' version of a (usually) user-specified axis,
* allowing for negative indexing (e.g., -1 for the last axis).
*
* @param axis_index the axis index.
* If 0 <= index < num_axes(), return index.
* If -num_axes <= index <= -1, return (num_axes() - (-index)),
* e.g., the last axis index (num_axes() - 1) if index == -1,
* the second to last if index == -2, etc.
* Dies on out of range index.
*/
inline int CanonicalAxisIndex(int axis_index) const
CHECK_GE(axis_index, -num_axes())
<< "axis " << axis_index << " out of range for " << num_axes()
<< "-D Blob with shape " << shape_string();
CHECK_LT(axis_index, num_axes())
<< "axis " << axis_index << " out of range for " << num_axes()
<< "-D Blob with shape " << shape_string();
if (axis_index < 0)
return axis_index + num_axes();
return axis_index;
/// @brief Deprecated legacy shape accessor num: use shape(0) instead.
inline int num() const return LegacyShape(0);
/// @brief Deprecated legacy shape accessor channels: use shape(1) instead.
inline int channels() const return LegacyShape(1);
/// @brief Deprecated legacy shape accessor height: use shape(2) instead.
inline int height() const return LegacyShape(2);
/// @brief Deprecated legacy shape accessor width: use shape(3) instead.
inline int width() const return LegacyShape(3);
inline int LegacyShape(int index) const
CHECK_LE(num_axes(), 4)
<< "Cannot use legacy accessors on Blobs with > 4 axes.";
CHECK_LT(index, 4);
CHECK_GE(index, -4);
if (index >= num_axes() || index < -num_axes())
// Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse
// indexing) -- this special case simulates the one-padding used to fill
// extraneous axes of legacy blobs.
return 1;
return shape(index);
inline int offset(const int n, const int c = 0, const int h = 0,
const int w = 0) const
CHECK_GE(n, 0);
CHECK_LE(n, num());
CHECK_GE(channels(), 0);
CHECK_LE(c, channels());
CHECK_GE(height(), 0);
CHECK_LE(h, height());
CHECK_GE(width(), 0);
CHECK_LE(w, width());
return ((n * channels() + c) * height() + h) * width() + w;
inline int offset(const vector<int>& indices) const
CHECK_LE(indices.size(), num_axes());
int offset = 0;
for (int i = 0; i < num_axes(); ++i)
offset *= shape(i);
if (indices.size() > i)
CHECK_GE(indices[i], 0);
CHECK_LT(indices[i], shape(i));
offset += indices[i];
return offset;
/**
* @brief Copy from a source Blob.
*
* @param source the Blob to copy from
* @param copy_diff if false, copy the data; if true, copy the diff
* @param reshape if false, require this Blob to be pre-shaped to the shape
* of other (and die otherwise); if true, Reshape this Blob to other's
* shape if necessary
*/
void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,
bool reshape = false);
inline Dtype data_at(const int n, const int c, const int h,
const int w) const
return cpu_data()[offset(n, c, h, w)];
inline Dtype diff_at(const int n, const int c, const int h,
const int w) const
return cpu_diff()[offset(n, c, h, w)];
inline Dtype data_at(const vector<int>& index) const
return cpu_data()[offset(index)];
inline Dtype diff_at(const vector<int>& index) const
return cpu_diff()[offset(index)];
inline const shared_ptr<SyncedMemory>& data() const
CHECK(data_);
return data_;
inline const shared_ptr<SyncedMemory>& diff() const
CHECK(diff_);
return diff_;
const Dtype* cpu_data() const;
void set_cpu_data(Dtype* data);
const int* gpu_shape() const;
const Dtype* gpu_data() const;
const Dtype* cpu_diff() const;
const Dtype* gpu_diff() const;
Dtype* mutable_cpu_data();
Dtype* mutable_gpu_data();
Dtype* mutable_cpu_diff();
Dtype* mutable_gpu_diff();
void Update();
void FromProto(const BlobProto& proto, bool reshape = true);
void ToProto(BlobProto* proto, bool write_diff = false) const;
/// @brief Compute the sum of absolute values (L1 norm) of the data.
Dtype asum_data() const;
/// @brief Compute the sum of absolute values (L1 norm) of the diff.
Dtype asum_diff() const;
/// @brief Compute the sum of squares (L2 norm squared) of the data.
Dtype sumsq_data() const;
/// @brief Compute the sum of squares (L2 norm squared) of the diff.
Dtype sumsq_diff() const;
/// @brief Scale the blob data by a constant factor.
void scale_data(Dtype scale_factor);
/// @brief Scale the blob diff by a constant factor.
void scale_diff(Dtype scale_factor);
/**
* @brief Set the data_ shared_ptr to point to the SyncedMemory holding the
* data_ of Blob other -- useful in Layer%s which simply perform a copy
* in their Forward pass.
*
* This deallocates the SyncedMemory holding this Blob's data_, as
* shared_ptr calls its destructor when reset with the "=" operator.
*/
void ShareData(const Blob& other);
/**
* @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the
* diff_ of Blob other -- useful in Layer%s which simply perform a copy
* in their Forward pass.
*
* This deallocates the SyncedMemory holding this Blob's diff_, as
* shared_ptr calls its destructor when reset with the "=" operator.
*/
void ShareDiff(const Blob& other);
bool ShapeEquals(const BlobProto& other);
protected:
shared_ptr<SyncedMemory> data_;
shared_ptr<SyncedMemory> diff_;
shared_ptr<SyncedMemory> shape_data_;
vector<int> shape_;
int count_;
int capacity_;
DISABLE_COPY_AND_ASSIGN(Blob);
; // class Blob
// namespace caffe
#endif // CAFFE_BLOB_HPP_
以上是关于caffe源码剖析之Blob的主要内容,如果未能解决你的问题,请参考以下文章