Caffe源码理解1:Blob存储结构与设计
Posted shine-lee
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Caffe源码理解1:Blob存储结构与设计相关的知识,希望对你有一定的参考价值。
博客:blog.shinelee.me | 博客园 | CSDN
Blob作用
据Caffe官方描述:
A Blob is a wrapper over the actual data being processed and passed along by Caffe, and also under the hood provides synchronization capability between the CPU and the GPU. Mathematically, a blob is an N-dimensional array stored in a C-contiguous fashion.
Caffe stores and communicates data using blobs. Blobs provide a unified memory interface holding data; e.g., batches of images, model parameters, and derivatives for optimization.
Blobs conceal the computational and mental overhead of mixed CPU/GPU operation by synchronizing from the CPU host to the GPU device as needed. Memory on the host and device is allocated on demand (lazily) for efficient memory usage.
Blob
是Caffe中的基础数据结构,主要作用如下:
- 存储和传输数据,对外提供统一的内存接口。在Caffe中,输入图像、每层的权重和反向传播时的梯度、每层的输入和输出等都以
Blob
形式管理 - 隐藏CPU和GPU之间数据同步的细节(通过
SyncedMemory
实现),用户使用时不需要自己管理CPU和GPU间的数据同步
在逻辑上,Blob
是个(N_d)维张量。当(N_d=4)时,Blob
的shape定义为(N * C * H * W),即(Num * Channel * Height * Width),可以表示输入图像Batch、卷积层的kernel参数、卷积层的输入输出map等;当(N_d=2)时,可以表示全连接层的权重,(N_{out} * N_{in});当(N_d=1)时,可以表示卷积层和全连接层的bias参数。
具体地,
- (N_d=4),
Blob
表示输入图像时,(N)为当前批次的图片数量即MiniBatchNum,(C)为图像的通道数,RGB图(C=3),(H)和(W)为图像的高和宽。 - (N_d=4),
Blob
表示卷积层的输入输出时,(N=1),(C)为特征图的数量,(H)和(W)为特征图的高和宽。 - (N_d=4),
Blob
表示卷积层kernel参数时,(N)为当前层输出特征图的数量,其与卷积核数量相同,(C)为当前层输入特征图的数量,其与一个卷积核的层数相同,(H)和(W)为卷积核的高和宽,每个卷积是三维的即(C*H*W)。 - (N_d=2),
Blob
表示全连接层的权重时,shape为(N_{out} * N_{in})的二维矩阵,(N_{out})为输出数量,(N_{in})为输入数量。 - (N_d=1),
Blob
为长度为(N)的向量,表示卷积层bias参数时,(N)为卷积核数量(与输出特征图数量相同),表示全连接层bias参数时,(N)为输出数量(与上面的(N_{out})相同)。
主要成员变量
shared_ptr<SyncedMemory> data_; // 数据,存储图像、参数、输入输出等
shared_ptr<SyncedMemory> diff_; // 反向传播时的梯度,训练阶段update时参数的更新量
shared_ptr<SyncedMemory> shape_data_; // GPU shape,与下面的shape是相同的
vector<int> shape_; // shape,data和diff相同
int count_; // 张量中的元素数量,比如 N*C*H*W
int capacity_; // 容量,当前分配内存的大小,当reshape时,可能需要扩容
Blob存储结构
Blob
的data_
和diff_
对应的数据区,在内存中均以行有先的方式存储(C语言风格)。行优先和列优先的存储方式如下图所示,9个数连续存储,表示同一个矩阵,但是存储顺序不同,图片来自WIKI:
当输入图像为1张RGB图时,shape为(1*3*4*5),其存储顺序如下图所示,图片素材来自链接。channel维上,0为R,1为G、2为B,先在R上行有先存储,再在G上行有先存储,最后在B上行有先存储。这里仅作示意,在caffe中实际存储顺序为BGR。
当(N=4)时,(Num * Channel * Height * Width),Blob
在(Width)维上连续存储,如下图所示:
理解了上图,再理解多维Blob
的拼接、裁剪等操作就很容易了。
通过Blob
的offset
成员函数可以获得((n, c, h, w))处的偏移量,偏移的计算方式与行优先存储是一致的,代码如下:
inline int offset(const int n, const int c = 0, const int h = 0,
const int w = 0) const {
CHECK_GE(n, 0);
CHECK_LE(n, num());
CHECK_GE(channels(), 0);
CHECK_LE(c, channels());
CHECK_GE(height(), 0);
CHECK_LE(h, height());
CHECK_GE(width(), 0);
CHECK_LE(w, width());
return ((n * channels() + c) * height() + h) * width() + w;
}
CPU与GPU间的数据传递
const Dtype* cpu_data() const; // 不可修改数据,return (const Dtype*)data_->cpu_data();
const Dtype* gpu_data() const; // return (const Dtype*)data_->gpu_data();
Dtype* mutable_cpu_data(); // 可修改数据,return static_cast<Dtype*>(data_->mutable_cpu_data());
Dtype* mutable_gpu_data(); // static_cast<Dtype*>(data_->mutable_gpu_data());
Caffe中通过上述方式来获取CPU和GPU上的数据区指针,在调用函数时,SyncedMemory
会自行判断是否需要同步数据(具体是如何判断的,在讲SyncedMemory
时再详细说明),当访问CPU(GPU)侧数据时,如果GPU(CPU)侧数据(可能)更新过,则将数据同步至CPU(GPU)。可参考下面示例代码来理解何时会发生数据同步,示例代码来自Caffe官网。
// Assuming that data are on the CPU initially, and we have a blob.
const Dtype* foo;
Dtype* bar;
foo = blob.gpu_data(); // data copied cpu->gpu.
foo = blob.cpu_data(); // no data copied since both have up-to-date contents.
bar = blob.mutable_gpu_data(); // no data copied.
// ... some operations ...
bar = blob.mutable_gpu_data(); // no data copied when we are still on GPU.
foo = blob.cpu_data(); // data copied gpu->cpu, since the gpu side has modified the data
foo = blob.gpu_data(); // no data copied since both have up-to-date contents
bar = blob.mutable_cpu_data(); // still no data copied.
bar = blob.mutable_gpu_data(); // data copied cpu->gpu.
bar = blob.mutable_cpu_data(); // data copied gpu->cpu.
只要调用了mutable
函数,即便没有实际修改数据,再调用另一侧的mutable
函数,也会发生数据同步。因此,在明确不修改数据时,尽量调用const
函数,只有在操纵数据时才调用mutable
函数。
主要成员函数
Blob
的主要成员函数有:
- 基本函数,包括构造函数、set和get类函数、逻辑判断等
Reshape
函数,用于设置Blob
的shape
,分配内存Update
函数,用于在网络训练时更新参数使用,(data = data - diff)Blob
运算函数,用于切片统计、求L1范数、L2范数、数乘等- 辅助函数,proto导入导出等
下面重点介绍其中主要的成员函数。
template <typename Dtype>
class Blob {
public:
Blob()
: data_(), diff_(), count_(0), capacity_(0) {}
/// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
explicit Blob(const int num, const int channels, const int height,
const int width);
explicit Blob(const vector<int>& shape);
// ......
}
在Blob
的构造函数中,会调用Reshape
函数,给shape
成员变量赋值以及分配初始内存。在Layer::Reshape
或者Layer::Forward
时,也会调用Reshape
函数来设置输出Blob
的维度,如果reshape了整个网络的输入Blob
,则需要调用Net::Forward
或者Net::Reshape
来重新确定每一层相关Blob
的shape(从bottom到top逐层推算得出)。当Blob
size发生改变时,只有在内存不够才会再分配内存,具体代码如下
template <typename Dtype>
bool Blob<Dtype>::Reshape(const vector<int>& shape) {
CHECK_LE(shape.size(), kMaxBlobAxes);
count_ = 1;
shape_.resize(shape.size());
if (!shape_data_ || shape_data_->size() < shape.size() * sizeof(int)) {
shape_data_.reset(new SyncedMemory(shape.size() * sizeof(int)));
}
int* shape_data = static_cast<int*>(shape_data_->mutable_cpu_data());
for (int i = 0; i < shape.size(); ++i) {
CHECK_GE(shape[i], 0);
if (count_ != 0) {
CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX";
}
count_ *= shape[i];
shape_[i] = shape[i];
shape_data[i] = shape[i];
}
// 不够时分配内存,原内存会释放(shared_ptr)
if (count_ > capacity_) {
capacity_ = count_;
data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
return true;
}
else {
return false;
}
}
在网络训练阶段,根据损失函数以及反向传播得到的梯度,获得每层参数的更新量diff_
,会调用Update
函数来更新参数,如下
template <typename Dtype>
void Blob<Dtype>::Update() {
// We will perform update based on where the data is located.
switch (data_->head()) {
case SyncedMemory::HEAD_AT_CPU:
// perform computation on CPU
// data = data - diff, axpy: y = ax + y
caffe_axpy<Dtype>(count_, Dtype(-1),
static_cast<const Dtype*>(diff_->cpu_data()),
static_cast<Dtype*>(data_->mutable_cpu_data()));
break;
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
// perform computation on GPU
caffe_gpu_axpy<Dtype>(count_, Dtype(-1),
static_cast<const Dtype*>(diff_->gpu_data()),
static_cast<Dtype*>(data_->mutable_gpu_data()));
#else
NO_GPU;
#endif
break;
default:
LOG(FATAL) << "Syncedmem not initialized.";
}
}
值得一提的是,Blob
维度索引支持负数,-1表示最后一个维度,与Python相同,实现代码如下,在需要访问某个维度时,先使用CanonicalAxisIndex
获得真正维度,比如CanonicalAxisIndex(-1)
。
// axis_index the axis index.
// If 0 <= index < num_axes(), return index.
// If -num_axes <= index <= -1, return (num_axes() - (-index))
inline int CanonicalAxisIndex(int axis_index) const {
CHECK_GE(axis_index, -num_axes())
<< "axis " << axis_index << " out of range for " << num_axes()
<< "-D Blob with shape " << shape_string();
CHECK_LT(axis_index, num_axes())
<< "axis " << axis_index << " out of range for " << num_axes()
<< "-D Blob with shape " << shape_string();
if (axis_index < 0) {
return axis_index + num_axes();
}
return axis_index;
}
其他函数,只取代表。
// set get
// 省略基本的set和get函数,如上面提到的const和mutable函数
// 返回(n, c, h, w)处的数据,return cpu_data()[offset(n, c, h, w)]
inline Dtype data_at(const int n, const int c, const int h, const int w) const;
inline Dtype diff_at(const int n, const int c, const int h, const int w) const;
void ShareData(const Blob& other); // 与另一Blob共享data,类似浅拷贝
void ShareDiff(const Blob& other); // 与另一Blob共享diff
// 从另一Blob拷贝,类似深拷贝
void Blob<Dtype>::CopyFrom(const Blob& source, bool copy_diff, bool reshape);
// 切片元素数量统计,count *= shape(i)
inline int count(int start_axis, int end_axis) const;
// proto序列化与反序列化
void FromProto(const BlobProto& proto, bool reshape = true); // 从proto导入
void ToProto(BlobProto* proto, bool write_diff = false) const; // 导出为proto
// 运算
Dtype asum_data() const; // data L1 norm
Dtype asum_diff() const; // diff L1 norm
Dtype sumsq_data() const; // data L2 norm
Dtype sumsq_diff() const; // diff L2 norm
void scale_data(Dtype scale_factor); // data 数乘,in place
void scale_diff(Dtype scale_factor); // diff 数乘,in place
// 逻辑判断
bool ShapeEquals(const BlobProto& other); // 判断shape是否相同
以上。
参考
- Blobs, Layers, and Nets: anatomy of a Caffe model
- Row- and column-major order
- Caffe: a fast open framework for deep learning
以上是关于Caffe源码理解1:Blob存储结构与设计的主要内容,如果未能解决你的问题,请参考以下文章