常见的数据挖掘方法都有哪些

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了常见的数据挖掘方法都有哪些相关的知识,希望对你有一定的参考价值。

数据挖掘的常用方法有:

    神经网络方法

    神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。

    遗传算法

    遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。

    决策树方法

    决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。

    粗集方法

    粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。

    覆盖正例排斥反例方法

    它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。

    统计分析方法

    在数据库字段项之间存在两种关系:函数关系和相关关系,对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计、回归分析、相关分析、差异分析等。

    模糊集方法

    即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。

参考技术A 在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。
(1)分类。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。
(2)回归分析。回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。
(3)聚类。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。
(4)关联规则。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则的挖掘过程主要包括两个阶段:第一阶段为从海量原始数据中找出所有的高频项目组;第二极端为从这些高频项目组产生关联规则。关联规则挖掘技术已经被广泛应用于金融行业企业中用以预测客户的需求,各银行在自己的ATM 机上通过捆绑客户可能感兴趣的信息供用户了解并获取相应信息来改善自身的营销。
(5)神经网络方法。神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的以及那些以模糊、不完整、不严密的知识或数据为特征的处理问题,它的这一特点十分适合解决数据挖掘的问题。典型的神经网络模型主要分为三大类:第一类是以用于分类预测和模式识别的前馈式神经网络模型,其主要代表为函数型网络、感知机;第二类是用于联想记忆和优化算法的反馈式神经网络模型,以Hopfield 的离散模型和连续模型为代表。第三类是用于聚类的自组织映射方法,以ART 模型为代表。虽然神经网络有多种模型及算法,但在特定领域的数据挖掘中使用何种模型及算法并没有统一的规则,而且人们很难理解网络的学习及决策过程。
(6)Web数据挖掘。Web数据挖掘是一项综合性技术,指Web 从文档结构和使用的集合C 中发现隐含的模式P,如果将C看做是输入,P 看做是输出,那么Web 挖掘过程就可以看做是从输入到输出的一个映射过程。其流程:发现资源;信息选择和预处理;模式识别;模式分析。
当前越来越多的Web 数据都是以数据流的形式出现的,因此对Web 数据流挖掘就具有很重要的意义。目前常用的Web数据挖掘算法有:PageRank算法,HITS算法以及LOGSOM 算法。这三种算法提到的用户都是笼统的用户,并没有区分用户的个体。目前Web 数据挖掘面临着一些问题,包括:用户的分类问题、网站内容时效性问题,用户在页面停留时间问题,页面的链入与链出数问题等。在Web 技术高速发展的今天,这些问题仍旧值得研究并加以解决。本回答被提问者采纳
参考技术B 数据挖掘技术对提升企业核心竞争力影响研究社交网络的图数据挖掘应用研究云计算和大数据环境下数据挖掘算法研究数据挖掘在智能在线答疑系统中的应用商务智能、推荐系统、主题模型等等很多。

011-黑盒测试的测试用例常见设计方法都有哪些?请分别以具体的例子来说明这些方法在测试用例设计工作中的应用

黑盒测试的测试用例常见设计方法都有哪些?请分别以具体的例子来说明这些方法在测试用例设计工作中的应用。

1)等价类划分
  等价类是指某个输入域的子集合.在该子集合中,各个输入数据对于揭露程序中的错误都是等效的.并合理地假定:测试某等价类的代表值就等于对这一类其它值的测试.因此,可以把全部输入数据合理划分为若干等价类,在每一个等价类中取一个数据作为测试的输入条件,就可以用少量代表性的测试数据.取得较好的测试结果.等价类划分可有两种不同的情况:有效等价类和无效等价类.

 

2)边界值分析法

  边界值分析方法是对等价类划分方法的补充。测试工作经验告诉我,大量的错误是发生在输入或输出范围的边界上,而不是发生在输入输出范围的内部.因此针对各种边界情况设计测试用例,可以查出更多的错误.使用边界值分析方法设计测试用例,首先应确定边界情况.通常输入和输出等价类的边界,就是应着重测试的边界情况.应当选取正好等于,刚刚大于或刚刚小于边界的值作为测试数据,而不是选取等价类中的典型值或任意值作为测试数据.

3)错误猜测法

  基于经验和直觉推测程序中所有可能存在的各种错误, 从而有针对性的设计测试用例的方法.

  错误推测方法的基本思想: 列举出程序中所有可能有的错误和容易发生错误的特殊情况,根据他们选择测试用例. 例如, 在单元测试时曾列出的许多在模块中常见的错误. 以前产品测试中曾经发现的错误等, 这些就是经验的总结. 还有, 输入数据和输出数据为 0 的情况.输入表格为空格或输入表格只有一行. 这些都是容易发生错误的情况. 可选择这些情况下的例子作为测试用例.

4)因果图方法

  前面介绍的等价类划分方法和边界值分析方法,都是着重考虑输入条件,但未考虑输入条件之间的联系, 相互组合等. 考虑输入条件之间的相互组合,可能会产生一些新的情况. 但要检查输入条件的组合不是一件容易的事情, 即使把所有输入条件划分成等价类,他们之间的组合情况也相当多. 因此必须考虑采用一种适合于描述对于多种条件的组合,相应产生多个动作的形式来考虑设计测试用例. 这就需要利用因果图(逻辑模型). 因果图方法最终生成的就是判定表. 它适合于检查程序输入条件的各种组合情况.

 

5)正交表分析法

  有时候,可能因为大量的参数的组合而引起测试用例数量上的激增,同时,这些测试用例并没有明显的优先级上的差距,而测试人员又无法完成这么多数量的测试,就可以通过正交表来进行缩减一些用例,从而达到尽量少的用例覆盖尽量大的范围的可能性。

6)场景分析方法
  指根据用户场景来模拟用户的操作步骤,这个比较类似因果图,但是可能执行的深度和可行性更好。

7)状态图法
  通过输入条件和系统需求说明得到被测系统的所有状态,通过输入条件和状态得出输出条件;通过输入条件、输出条件和状态得出被测系统的测试用例。

8)大纲法
  大纲法是一种着眼于需求的方法,为了列出各种测试条件,就将需求转换为大纲的形式。大纲表示为树状结构,在根和每个叶子结点之间存在唯一的路径。大纲中的每条路径定义了一个特定的输入条件集合,用于定义测试用例。树中叶子的数目或大纲中的路径给出了测试所有功能所需测试用例的大致数量。

以上是关于常见的数据挖掘方法都有哪些的主要内容,如果未能解决你的问题,请参考以下文章

常见的大数据分析工具都有哪些?

Web应用常见的安全漏洞都有哪些?

常见的接口测试工具都有哪些?

常见的接口测试工具都有哪些

常见的操作系统漏洞都有哪些怎么解决

机器学习中的数据预处理都有哪些常见/重要的工具