机器学习中的数据预处理都有哪些常见/重要的工具
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习中的数据预处理都有哪些常见/重要的工具相关的知识,希望对你有一定的参考价值。
参考技术A 大数据发展的挑战: 目前大数据的发展依然存在诸多挑战,包括七大方面的挑战:业务部门没有清晰的大数据需求导致数据资产逐渐流失;内部数据孤岛严重,导致数据价值不能充分挖掘;数据可用性低,数据质量差,导致数据无法利用;数据相关管理技。机器学习之常见的数据预处理:原始数据存在的几个问题:不一致;重复;含噪声;维度高。
1.1 数据挖掘中使用的数据的原则
尽可能赋予属性名和属性值明确的含义; 去除惟一属性; 去除重复性; 合理选择关联字段。
1.2 常见的数据预处理方法
数据清洗:数据清洗的目的不只是要消除错误、冗余和数据噪音,还要能将按不同的、不兼容的规则所得的各种数据集一致起来。 数据集成:将多个数据源中的数据合并,并存放到一个一致的数据存储(如数据仓库)中。这些数据源可能包括多个数据库、数据立方体或一般文件。
数据变换:找到数据的特征表示,用维度变换来减少有效变量的数目或找到数据的不变式,包括规格化、规约、切换和投影等操作。 数据规约:是在对发现任务和数据本身内容理解的基础上,寻找依赖于发现目标的表达数据的有用特征,以缩减数据模型,从而在尽可能保持数据原貌的前提下最大限度的精简数据量,主要有两个途径:属性选择和数据抽样,分别针对数据库中的属性和记录。
二、数据清洗
2.1 缺失值处理的两种方法
删除法,根据数据处理的不同角度,删除法可分为以下4种:
(1)删除观测样本 (2)删除变量:当某个变量缺失值较多且对研究目标影响不大时,可以将整个变量整体删除 (3)使用完整原始数据分析:当数据存在较多缺失而其原始数据完整时,可以使用原始数据替代现有数据进行分析; (4)改变权重:当删除缺失数据会改变数据结构时,通过对完整数据按照不同的权重进行加工,可以降低删除数据带来的偏差。
插补法:在条件允许的情况下,找到缺失值的替代值进行插补,尽可能还原真实数据是更好的方法。常见的方法有均值插补、回归插补、二阶插补、热平台、冷平台等单一变量插补。
(1)均值法是通过计算缺失值所在变量所有非缺失观测值的均值,使用均值来代替缺失值的插补方法。 (2)均值法不能利用相关变量信息,因此会存在一定偏差,而回归模型是将需要插补变量作为因变量,其他相关变量作为自变量,通过建立回归模型预测出因变量的值对缺失变量进行插补。 (3)热平台插补是指在非缺失数据集中找到一个与缺失值所在样本相似的样本(匹配样本),利用其中的观测值对缺失值进行插补。 (4)在实际操作中,尤其当变量数量很多时,通常很难找到与需要插补样本完全相同的样本,此时可以按照某些变量将数据分层,在层中对缺失值使用均值插补,即采取冷平台插补法。
2.2 噪声数据处理
噪声是一个测量变量中的随机错误和偏差,包括错误值或偏离期望的孤立点值。
噪声检查中比较常见的方法:
(1)通过寻找数据集中与其他观测值及均值差距最大的点作为异常 (2)聚类方法检测,将类似的取值组织成“群”或“簇”,落在“簇”集合之外的值被视为离群点。 在进行噪声检查后,通常采用分箱、聚类、回归、计算机检查和人工检查结合等方法“光滑”数据,去掉数据中的噪声。
分箱:分箱方法是一种简单常用的预处理方法,通过考察相邻数据来确定最终值。所谓“分箱”,实际上就是按照属性值划分的子区间,如果一个属性值处于某个子区间范围内,就称把该属性值放进这个子区间所代表的“箱子”内。把待处理的数据(某列属性值)按照一定的规则放进一些箱子中,考察每一个箱子中的数据,采用某种方法分别对各个箱子中的数据进行处理。在采用分箱技术时,需要确定的两个主要问题就是:如何分箱以及如何对每个箱子中的数据进行平滑处理。
2.2.1 分箱的方法:有4种:等深分箱法、等宽分箱法、最小熵法和用户自定义区间法。
等深分箱法(统一权重):将数据集按记录行数分箱,每箱具有相同的记录数,每箱记录数称为箱子的深度。这是最简单的一种分箱方法。
设定权重(箱子深度)为4,分箱后
箱1:800 1000 1200 1500
箱2:1500 1800 2000 2300
箱3:2500 2800 3000 3500
箱4:4000 4500 4800 5000
等宽分箱法(统一区间):使数据集在整个属性值的区间上平均分布,即每个箱的区间范围是一个常量,称为箱子宽度。
设定区间范围(箱子宽度)为1000元人民币,分箱后
箱1:800 1000 1200 1500 1500 1800
箱2:2000 2300 2500 2800 3000
箱3:3500 4000 4500
箱4:4800 5000
用户自定义区间:用户可以根据需要自定义区间,当用户明确希望观察某些区间范围内的数据分布时,使用这种方法可以方便地帮助用户达到目的。
如将客户收入划分为1000元以下、1000~2000、2000~3000、3000~4000和4000元以上几组,分箱后
箱1:800
箱2:1000 1200 1500 1500 1800 2000
箱3:2300 2500 2800 3000
箱4:3500 4000
箱5:4500 4800 5000
2.2.2 数据平滑方法
按平均值平滑 :对同一箱值中的数据求平均值,用平均值替代该箱子中的所有数据。 按边界值平滑:用距离较小的边界值替代箱中每一数据。 按中值平滑:取箱子的中值,用来替代箱子中的所有数据。
三、数据集成
数据集成中的两个主要问题是:
(1)如何对多个数据集进行匹配,当一个数据库的属性与另一个数据库的属性匹配时,必须注意数据的结构; (2)数据冗余。两个数据集有两个命名不同但实际数据相同的属性,那么其中一个属性就是冗余的。
四、数据变换
数据变换策略主要包括以下几种:
光滑:去掉噪声; 属性构造:由给定的属性构造出新属性并添加到数据集中。例如,通过“销售额”和“成本”构造出“利润”,只需要对相应属性数据进行简单变换即可 聚集:对数据进行汇总。比如通过日销售数据,计算月和年的销售数据; 规范化:把数据单按比例缩放,比如数据标准化处理; 离散化:将定量数据向定性数据转化。比如一系列连续数据,可用标签进行替换(0,1);
五、数据归约
数据归约通常用维归约、数值归约方法实现。维归约指通过减少属性的方式压缩数据量,通过移除不相关的属性,可以提高模型效率。常见的维归约方法有:分类树、随机森林通过对分类效果的影响大小筛选属性;小波变换、主成分分析通过把原数据变换或投影到较小的空间来降低维数。本回答被提问者采纳
剑桥大学:机器学习模型部署都有哪些坑?
来源:机器之心
本文约2500字,建议阅读6分钟 在生产环境中部署机器学习模型是一个复杂的过程,需要考虑诸多因素,也存在很多挑战。近日,来自剑桥的研究者梳理了该流程常见的问题。
https://arxiv.org/pdf/2011.09926.pdf
-
用例研究型论文:这类论文提供单个机器学习部署项目的经过,通常会深入讨论作者面临的每个挑战以及克服方式。 -
综述文章:这类文章描述了机器学习在特定领域或行业中的应用,通常总结了在所涉及领域中部署机器学习解决方案最常遇到的挑战。 -
经验总结型论文:作者通常会回顾他们在生产中部署机器学习模型的经验。
-
数据管理:重点是准备构建机器学习模型所需的数据。 -
模型学习:模型选择和训练。 -
模型验证:确保模型符合特定功能和性能要求。 -
模型部署:将训练好的模型集成到运行模型所需的软件基础架构中。此阶段还涵盖模型维护和更新的问题。
以上是关于机器学习中的数据预处理都有哪些常见/重要的工具的主要内容,如果未能解决你的问题,请参考以下文章