如何用SPSS进行解释变量的内生性检验与效果检验
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何用SPSS进行解释变量的内生性检验与效果检验相关的知识,希望对你有一定的参考价值。
在SPSS中,您可以使用回归分析来进行内生性检验和效应检验。
首先,您需要准备好数据并将其导入SPSS。然后,打开“分析”菜单并选择“回归”>“线性...”。在“线性回归”对话框中,在“因变量”框中选择您希望预测的变量,并在“自变量”框中选择您希望用作预测因子的变量。
接下来,您可以在“选项”选项卡中选择进行内生性检验的方法。SPSS提供了多种内生性检验方法,包括Hausman检验、Arellano-Bond检验和Baum-Schaffer-Stillman检验。您可以在“内生性检验”下拉菜单中选择您希望使用的方法。
如果您希望进行效应检验,则可以在“输出”选项卡中选择“效应检验”复选框。这将在输出中生成对效应的检验统计量和p值。
最后,单击“确定”按钮运行回归分析。SPSS将生成输出,其中包含内生性检验的结果和(如果选择了)效应检验的结果。
首先检验解释变量内生性(解释变量内生性的Hausman 检验:使用工具变量法的前提是存在内生解释变量。Hausman 检验的原假设为:所有解释变量均为外生变量,如果拒绝,则认为存在内生解释变量,要用IV;反之,如果接受,则认为不存在内生解释变量,应该使用OLS。
reg ldi lofdi
estimates store ols
xtivreg ldi (lofdi=l.lofdi ldep lexr)
estimates store iv
hausman iv ols
(在面板数据中使用工具变量,Stata提供了如下命令来执行2SLS:xtivreg depvar [varlist1] (varlist_2=varlist_iv) (选择项可以为fe,re等,表示固定效应、随机效应等。详见help xtivreg)
如果存在内生解释变量,则应该选用工具变量,工具变量个数不少于方程中内生解释变量的个数。“恰好识别”时用2SLS。2SLS的实质是把内生解释变量分成两部分,即由工具变量所造成的外生的变动部分,以及与扰动项相关的其他部分;然后,把被解释变量对中的这个外生部分进行回归,从而满足OLS前定变量的要求而得到一致估计量。tptqtp
二、异方差与自相关检验
在球型扰动项的假定下,2SLS是最有效的。但如果扰动项存在异方差或自相关,
面板异方差检验:
xtgls enc invs exp imp esc mrl,igls panel(het)
estimates store hetero
xtgls enc invs exp imp esc mrl,igls
estimates store homo
local df = e(N_g) - 1
lrtest hetero homo, df(`df')
面板自相关:xtserial enc invs exp imp esc mrl
则存在一种更有效的方法,即GMM。从某种意义上,GMM之于2SLS正如GLS之于OLS。好识别的情况下,GMM还原为普通的工具变量法;过度识别时传统的矩估计法行不通,只有这时才有必要使用GMM,过度识别检验(Overidentification Test或J Test):estat overid
三、工具变量效果验证
工具变量:工具变量要求与内生解释变量相关,但又不能与被解释变量的扰动项相关。由于这两个要求常常是矛盾的,故在实践上寻找合适的工具变量常常很困难,需要相当的想象力与创作性。常用滞后变量。
需要做的检验:
检验工具变量的有效性:
(1) 检验工具变量与解释变量的相关性
如果工具变量z与内生解释变量完全不相关,则无法使用工具变量法;如果与仅仅微弱地相关,。这种工具变量被称为“弱工具变量”(weak instruments)后果就象样本容量过小。检验弱工具变量的一个经验规则是,如果在第一阶段回归中,F统计量大于10,则可不必担心弱工具变量问题。Stata命令:estat first(显示第一个阶段回归中的统计量)
(2) 检验工具变量的外生性(接受原假设好)
在恰好识别的情况下,无法检验工具变量是否与扰动项相关。在过度识别(工具变量个数>内生变量个数)的情况下,则可进行过度识别检验(Overidentification Test),检验原假设所有工具变量都是外生的。如果拒绝该原假设,则认为至少某个变量不是外生的,即与扰动项相关。0H
Sargan统计量,Stata命令:estat overid
四、GMM过程
在Stata输入以下命令,就可以进行对面板数据的GMM估计。
. ssc install ivreg2 (安装程序ivreg2 )
. ssc install ranktest (安装另外一个在运行ivreg2 时需要用到的辅助程序ranktest)
. use "traffic.dta"(打开面板数据)
. xtset panelvar timevar (设置面板变量及时间变量)
. ivreg2 y x1 (x2=z1 z2),gmm2s (进行面板GMM估计,其中2s指的是2-step GMM)
spss分析方法-卡方检验
参考技术A 参数检验的前提是 关于总体分布的假设成立 ,但很多情况下我们无法获得有关总体分布的相关信息。非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。
卡方检验是一种用于 判断样本是否来自于特定分布的总体 的 非参数检验 方法,其根据样本的频数来推断总体分布与理论分布是否有显著差异。
下面我们主要从下面四个方面来解说:
实际应用
理论思想
操作过程
分析结果
一、实际应用
例如抽取某学校的学生的数据,推断性别比例是否4:6;医学家在研究心脏病人猝死人数与日期的关系时发现:一周之中,星期一心脏病人猝死者较多,其他日子则基本相当。当天的比例近似为2.8:1:1:1:1:1:1。现收集到心脏病人死亡日期的样本数据,推断其总体分布是否与上述理论分布相吻合。
二、理论思想
卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。H0原假设是: 样本来自的总体分布与期望分布或某一理论分布无差异 。
三、操作过程
卡方检验的数据条件:
条件宽松、对样本数据要求较低、计算相对简单
卡方检验案例:
题目:随机抽取的100名山东省某地区新出生婴儿的性别情况。试用卡方检验方法研究该地区新出生婴儿的男女比例是否存在明显的差别。
一、数据输入
二、操作步骤
1.进入SPSS,打开相关数据文件,选择“分析”“|非参数检验”“|旧对话框”|“卡方”命令
2.选择进行卡方检验的变量。在“卡方检验”对话框的左侧列表框中,选择“性别”进入“检验变量列表”列表框。
3.设置期望范围和期望值。在“卡方检验”对话框内的“期望范围”选项组中,选中“从数据中获取”单选按钮,也就是根据数据本身的最大值和最小值来确定检验值范围;在“期望值”选项组中,选中“所有类别相等”单选按钮,因为本例中各类别的构成比相同。
4.设定卡方检验的计算方法。单击“卡方检验”对话框中的“精确”按钮,选中“仅渐进法”单选按钮,单击“继续”按钮返回“卡方检验”对话框。
选择相关统计量的输出和缺失值的处理方法。
5.单击“卡方检验”对话框中的“选项”按钮,在“统计”选项组中选中“描述”复选框,也就是输出变量的描述性统计量,包括平均值、标准差、最大值、最小值等;在“缺失值”选项组中选中“按检验排除个案”单选按钮,即排除掉含有缺失值的记录后再进行卡方检验。设置完毕后,单击“继续”按钮返回“卡方检验”对话框。
6.其余设置采用系统默认值即可。
7.单击“确定”按钮,等待输出结果。
四、结果分析
1. 描述性统计量表接受检验的样本共100个,样本平均值是1.49,标准差是0.502,最小值是1,最大值是2。
2. 卡方检验频数表参与检验的男性婴儿共51个,女性婴儿共49个,期望数都是50.0,残差分别是1.0和-1.0。
3. 卡方检验统计量表卡方值是0.040,自由度是1,渐近显著性水平为0.841,远大于0.05,检验结果接受原假设。
分析结论:
综上所述,通过卡方检验,该地区新出生婴儿的男女比例没有明显的差别。
(获取更多知识,前往前往我的wx ————公z号 (程式解说)
原文来自https://mp.weixin.qq.com/s/4HW9cWF96yG7GKre5OFNHQ
以上是关于如何用SPSS进行解释变量的内生性检验与效果检验的主要内容,如果未能解决你的问题,请参考以下文章