Python 数据处理(二十四)—— 索引和选择

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python 数据处理(二十四)—— 索引和选择相关的知识,希望对你有一定的参考价值。

参考技术A

如果你想获取 \'A\' 列的第 0 和第 2 个元素,你可以这样做:

这也可以用 .iloc 获取,通过使用位置索引来选择内容

可以使用 .get_indexer 获取多个索引:

警告

对于包含一个或多个缺失标签的列表,使用 .loc 或 [] 将不再重新索引,而是使用 .reindex

在以前的版本中,只要索引列表中存在至少一个有效标签,就可以使用 .loc[list-of-labels]

但是现在,只要索引列表中存在缺失的标签将引发 KeyError 。推荐的替代方法是使用 .reindex() 。

例如

索引列表的标签都存在

先前的版本

但是,现在

索引标签列表中包含不存在的标签,使用 reindex

另外,如果你只想选择有效的键,可以使用下面的方法,同时保留了数据的 dtype

对于 .reindex() ,如果有重复的索引将会引发异常

通常,您可以将所需的标签与当前轴做交集,然后重新索引

但是,如果你的索引结果包含重复标签,还是会引发异常

使用 sample() 方法可以从 Series 或 DataFrame 中随机选择行或列。

该方法默认会对行进行采样,并接受一个特定的行数、列数,或数据子集。

默认情况下, sample 每行最多返回一次,但也可以使用 replace 参数进行替换采样

默认情况下,每一行被选中的概率相等,但是如果你想让每一行有不同的概率,你可以为 sample 函数的 weights 参数设置抽样权值

这些权重可以是一个列表、一个 NumPy 数组或一个 Series ,但它们的长度必须与你要抽样的对象相同。

缺失的值将被视为权重为零,并且不允许使用 inf 值。如果权重之和不等于 1 ,则将所有权重除以权重之和,将其重新归一化。例如

当应用于 DataFrame 时,您可以通过简单地将列名作为字符串传递给 weights 作为采样权重(前提是您要采样的是行而不是列)。

sample 还允许用户使用 axis 参数对列进行抽样。

最后,我们还可以使用 random_state 参数为 sample 的随机数生成器设置一个种子,它将接受一个整数(作为种子)或一个 NumPy RandomState 对象

当为该轴设置一个不存在的键时, .loc/[] 操作可以执行放大

在 Series 的情况下,这实际上是一个追加操作

可以通过 .loc 在任一轴上放大 DataFrame

这就像 DataFrame 的 append 操作

由于用 [] 做索引必须处理很多情况(单标签访问、分片、布尔索引等),所以需要一些开销来搞清楚你的意图

如果你只想访问一个标量值,最快的方法是使用 at 和 iat 方法,这两个方法在所有的数据结构上都实现了

与 loc 类似, at 提供了基于标签的标量查找,而 iat 提供了基于整数的查找,与 iloc 类似

同时,你也可以根据这些索引进行设置值

如果索引标签不存在,会放大数据

另一种常见的操作是使用布尔向量来过滤数据。运算符包括:

|(or) 、 &(and) 、 ~ (not)

这些必须用括号来分组,因为默认情况下, Python 会将 df[\'A\'] > 2 & df[\'B\'] < 3 这样的表达式评估为 df[\'A\'] > (2 & df[\'B\']) < 3 ,而理想的执行顺序是 (df[\'A\'] > 2) & (df[\'B\'] < 3)

使用一个布尔向量来索引一个 Series ,其工作原理和 NumPy ndarray 一样。

您可以使用一个与 DataFrame 的索引长度相同的布尔向量从 DataFrame 中选择行

列表推导式和 Series 的 map 函数可用于产生更复杂的标准

我们可以使用布尔向量结合其他索引表达式,在多个轴上索引

iloc 支持两种布尔索引。如果索引器是一个布尔值 Series ,就会引发异常。

例如,在下面的例子中, df.iloc[s.values, 1] 是正确的。但是 df.iloc[s,1] 会引发 ValueError 。

Python学习笔记(二十四)StringIO和BytesIO

StringIO

很多时候,数据读写不一定是文件,也可以在内存中读写

StringIO顾名思义就是在内存中读写str

要把str写入StringIO,我们需要先创建一个StringIO,然后,像文件一样写入即可:

>>> from io import StringIO
>>> f = StringIO()
>>> f.write(hello)
5
>>> f.write( )
1
>>> f.write(world!)
6
>>> print(f.getvalue())
hello world!

getvalue()方法用于获得写入后的str。

要读取StringIO,可以用一个str初始化StringIO,然后,像读文件一样读取:

>>> from io import StringIO
>>> f = StringIO(Hello!\nHi!\nGoodbye!)
>>> while True:
...     s = f.readline()
...     if s == ‘‘:
...         break
...     print(s.strip())
...
Hello!
Hi!
Goodbye!

BytesIO

StringIO操作的只能是str,如果要操作二进制数据,就需要使用BytesIO。

BytesIO实现了在内存中读写bytes,我们创建一个BytesIO,然后写入一些bytes:

>>> from io import BytesIO
>>> f = BytesIO()
>>> f.write(中文.encode(utf-8))
6
>>> print(f.getvalue())
b\xe4\xb8\xad\xe6\x96\x87

请注意,写入的不是str,而是经过UTF-8编码的bytes。

和StringIO类似,可以用一个bytes初始化BytesIO,然后,像读文件一样读取

>>> from io import BytesIO
>>> f = BytesIO(b\xe4\xb8\xad\xe6\x96\x87)
>>> f.read()
b\xe4\xb8\xad\xe6\x96\x87

小结

StringIO和BytesIO是在内存中操作str和bytes的方法,使得和读写文件具有一致的接口。

 

以上是关于Python 数据处理(二十四)—— 索引和选择的主要内容,如果未能解决你的问题,请参考以下文章

从零开始学习CANoe(二十四)—— Python和CANoe的数据交互(调用CAPL Function)

Python+Selenium练习(二十四)- 鼠标右键

Python学习笔记(二十四)StringIO和BytesIO

全国计算机等级考试二级Python(2021年9月)备考笔记 第十四天

Hadoop MapReduce编程 API入门系列之倒排索引(二十四)

Python3.5 学习二十四