Hadoop3数据容错技术(纠删码)
Posted 大数据技术派
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop3数据容错技术(纠删码)相关的知识,希望对你有一定的参考价值。
关注公众号:大数据技术派,回复“资料”,领取资料,学习大数据技术。
背景
随着大数据技术的发展,HDFS作为Hadoop的核心模块之一得到了广泛的应用。为了数据的可靠性,HDFS通过多副本机制来保证。在HDFS中的每一份数据都有两个副本,1TB的原始数据需要占用3TB的磁盘空间,存储利用率只有1/3。而且系统中大部分是使用频率非常低的冷数据,却和热数据一样存储3个副本,给存储空间和网络带宽带来了很大的压力。因此,在保证可靠性的前提下如何提高存储利用率已成为当前HDFS面对的主要问题之一。Hadoop 3.0 引入了纠删码技术(Erasure Coding),它可以提高50%以上的存储利用率,并且保证数据的可靠性。纠删码技术(Erasure coding)简称EC,是一种编码容错技术。最早用于通信行业,数据传输中的数据恢复。它通过对数据进行分块,然后计算出校验数据,使得各个部分的数据产生关联性。当一部分数据块丢失时,可以通过剩余的数据块和校验块计算出丢失的数据块。
原理
Reed-Solomon(RS)码是存储系统较为常用的一种纠删码,它有两个参数k和m,记为RS(k,m)。如下图所示,k个数据块组成一个向量被乘上一个生成矩阵(Generator Matrix)GT从而得到一个码字(codeword)向量,该向量由k个数据块和m个校验块构成。如果一个数据块丢失,可以用(GT)-1乘以码字向量来恢复出丢失的数据块。RS(k,m)最多可容忍m个块(包括数据块和校验块)丢失。比如:我们有 7、8、9 三个原始数据,通过矩阵乘法,计算出来两个校验数据 50、122。这时原始数据加上校验数据,一共五个数据:7、8、9、50、122,可以任意丢两个,然后通过算法进行恢复。
7 x
50 y
x + 2*8 + 3 * 9 = y
4x + 5*8 + 6 * 9 = 122
HDFS EC 方案
传统模式下HDFS中文件的基本构成单位是block,而EC模式下文件的基本构成单位是block group。以RS(3,2)为例,每个block group包含3个数据块,2个校验块。
连续布局(Contiguous Layout)
文件数据被依次写入块中,一个块写满之后再写入下一个块,这种分布方式称为连续布局。优点:
- 容易实现
- 方便和多副本存储策略进行转换
缺点:
- 需要客户端缓存足够的数据块
- 不适合存储小文件
条形布局(Striping Layout)
条(stripe)是由若干个相同大小的单元(cell)构成的序列。文件数据被依次写入条的各个单元中,当一个条写满之后再写入下一个条,一个条的不同单元位于不同的数据块中。这种分布方式称为条形布局。优点:
- 客户端缓存数据较少
- 无论文件大小都适用
缺点:
- 会影响一些位置敏感任务的性能,因为原先在一个节点上的块被分散到了多个不同的节点上
- 和多副本存储策略转换比较麻烦
HDFS EC 开发计划
整个HDFS EC项目主要分为两个阶段:1、用户可以读和写一个条形布局(Striping Layout)的文件;如果该文件的一个块丢失,后台能够检查出并恢复;如果在读的过程中发现数据丢失,能够立即解码出丢失的数据从而不影响读操作。2、支持将一个多副本模式(HDFS原有模式)的文件转换成连续布局(Contiguous Layout),以及从连续布局转换成多副本模式。第一阶段 HDFS-7285 已经实现,第二阶段 HDFS-8030 正在进行中。
纠删码策略
RS-10-4-1024k:使用RS编码,每10个数据单元(cell),生成4个校验单元,共14个单元,也就是说:这14个单元中,只要有任意的10个单元存在(不管是数据单元还是校验单元,只要总数=10),就可以得到原始数据。每个单元的大小是1024k=10241024=1048576。RS-3-2-1024k:使用RS编码,每3个数据单元,生成2个校验单元,共5个单元,也就是说:这5个单元中,只要有任意的3个单元存在(不管是数据单元还是校验单元,只要总数=3),就可以得到原始数据。每个单元的大小是1024k=10241024=1048576。RS-6-3-1024k:使用RS编码,每6个数据单元,生成3个校验单元,共9个单元,也就是说:这9个单元中,只要有任意的6个单元存在(不管是数据单元还是校验单元,只要总数=6),就可以得到原始数据。每个单元的大小是1024k=10241024=1048576。RS-LEGACY-6-3-1024k:策略和上面的RS-6-3-1024k一样,只是编码的算法用的是rs-legacy,应该是之前遗留的rs算法。XOR-2-1-1024k:使用XOR编码(速度比RS编码快),每2个数据单元,生成1个校验单元,共3个单元,也就是说:这3个单元中,只要有任意的2个单元存在(不管是数据单元还是校验单元,只要总数=2),就可以得到原始数据。每个单元的大小是1024k=10241024=1048576。
以RS-6-3-1024k为例,6个数据单元+3个校验单元,可以容忍任意的3个单元丢失,冗余的数据是50%。而采用副本方式,3个副本,冗余200%,却还不能容忍任意的3个单元丢失。因此,RS编码在相同冗余度的情况下,会大大提升数据的可用性,而在相同可用性的情况下,会大大节省冗余空间。
纠删码基本操作
- 查看当前支持的纠删码策略命令如下:
[user@nn1 ~]$ hdfs ec -listPolicies
Erasure Coding Policies:
ErasureCodingPolicy=[Name=RS-10-4-1024k, Schema=[ECSchema=[Codec=rs, numDataUnits=10, numParityUnits=4]], CellSize=1048576, Id=5, State=DISABLED]
ErasureCodingPolicy=[Name=RS-3-2-1024k, Schema=[ECSchema=[Codec=rs, numDataUnits=3, numParityUnits=2]], CellSize=1048576, Id=2, State=DISABLED]
ErasureCodingPolicy=[Name=RS-6-3-1024k, Schema=[ECSchema=[Codec=rs, numDataUnits=6, numParityUnits=3]], CellSize=1048576, Id=1, State=DISABLED]
ErasureCodingPolicy=[Name=RS-LEGACY-6-3-1024k, Schema=[ECSchema=[Codec=rs-legacy, numDataUnits=6, numParityUnits=3]], CellSize=1048576, Id=3, State=DISABLED]
ErasureCodingPolicy=[Name=XOR-2-1-1024k, Schema=[ECSchema=[Codec=xor, numDataUnits=2, numParityUnits=1]], CellSize=1048576, Id=4, State=DISABLED]
- 设置纠删码策略
纠删码策略是与具体的路径(path)相关联的。也就是说,如果我们要使用纠删码,则要给一个具体的路径设置纠删码策略,后续,所有往此目录下存储的文件,都会执行此策略。例子如下 首先在/下创建目录rs-6-3,然后查看其是否设置了纠删码策略,结果显示没有指定策略(新建的目录不会指定策略)
hdfs://bigdata/dn1/path
hdfs://bigdata/dn1/path2
[user@nn1 ~]$ hdfs dfs -mkdir /rs-6-3
[user@nn1 ~]$ hdfs ec -getPolicy -path /rs-6-3
The erasure coding policy of /rs-6-3 is unspecified
接下来,给此目录设置纠删码策略RS-6-3-1024k,此策略名是从前面list策略中查到的。可以看到已经设置成功。
[user[@nn1 ](/nn1 ) ~]$ hdfs ec -setPolicy -path /rs-6-3 -policy RS-6-3-1024k
Set erasure Hadoop3数据容错技术(纠删码)分布式系统下的纠删码技术 -- Erasure Code (EC)
分布式系统下的纠删码技术 -- Erasure Code (EC)
Hadoop3.0时代,怎么能不懂EC技术纠删码? 个推为你解读