钙钛矿型催化材料的相关信息
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了钙钛矿型催化材料的相关信息相关的知识,希望对你有一定的参考价值。
参考技术A在满足容限因子的条件下,有多种元素可以形成钙钛矿结构的化合物。通常,B位离子决定了钙钛矿型化合物的催化活性,A位离子是影响化合物结构和B位离子价态的重要因素。当A位离子或B位离子被不同价态的离子取代时,通过形成氧离子空穴或者形成混合价态来保持化合物的电中性。氧空穴的形成或B位离子价态的变化使得化合物具有更高的活性。贵金属和钙钛矿型化合物结合,不仅可以有效防止贵金属的烧结,同时也提高了钙钛矿型化合物的催化活性。
关键词:催化剂工程;钙钛矿;汽车催化剂;贵金属;催化材料
1 引 言
长期以来,以贵金属为主要活性组分的催化剂被认为是净化汽车尾气最有效的催化剂。但贵金属资源紧缺、价格昂贵,而且由于贵金属易高温烧结和挥发,使得贵金属催化剂在热稳定性方面不占优势。人们一直在寻找具有高净化效率的不含贵金属的催化剂。钙钛矿型氧化物具有较低的价格和灵活多变的组成,其催化性能在一定程度上可以进行调节,因而受到人们的关注。用这类化合物作为三效催化剂来取代传统的Pt/Rh基催化剂具有一定的优越性。由于其组成和结构的灵活多变性,钙钛矿型化合物被看成是固态化学、物理学、催化作用等基础领域的样板材料。
钙钛矿是组成为CaTiO3的一种矿物,其英文名称Perovskite是地质学家Gustav Rose根据俄国地质学家Count Lev A leksevich von Perovski的名字命名的[1]。在20世纪70年代初,Libby[2,3]对含稀土和钴的钙钛矿型氧化物进行了系统研究,提出用钙钛矿结构的氧化物代替贵金属用于汽车尾气净化催化剂具有潜在的可能。而后Voorhoeve等[4,5]对稀土钙钛矿型催化剂进行了深入的研究。从早期的研究成果看,含稀土的钴酸盐和锰酸盐在完全氧化反应方面显示了极高的催化活性。本文对钙钛矿型复合氧化物催化剂研究状况进行简要回顾和展望。
2 钙钛矿型氧化物的结构
钙钛矿型化合物的化学式为ABO3,周期表中绝大部分元素都能组成稳定的钙钛矿结构。在通常情况下[6],A位是半径较大的碱金属、碱土金属和稀土金属离子,处于12个氧原子组成的十四面体的中央。B位是半径比较小的过渡金属离子,处于6个氧离子组成的八面体中央。
在合成ABO3型氧化物时,各种离子的大小应满足一定的条件,否则晶格就变得不稳定,会发生畸变,或者形成其他结构[7]。Goldschmidt曾引入容限因子表达式:
式中:rA、rB、rO分别代表A、B、O的离子半径。当0.75<t<1时,ABO3为钙钛矿结构;当t<0.75时,为钛铁矿结构;当t>1时,以方解石或文石结构存在。有许多钛酸盐、锆酸盐、锡酸盐,例如A=Ca、Sr、Ba,B=Ti、Zr、Sn时,满足钙钛矿的容限因子,具有钙钛矿结构。ABO3中的A和B,并不仅仅局限于2价和4价的离子,只要它们的电价总和为6,而且离子半径匹配,都有可能形成钙钛矿型化合物。NaNbO3、LaFeO3、(K1/2La1/2)TiO3等,满足了电价条件和半径条件,都是具有钙钛矿结构的化合物。在La2/3Ca1/3MnO3中,低价态Ca的掺入,使得Mn采取+3和+4的混合价态,从而满足钙钛矿结构的电价要求。在Ca2CaUO6中,有1/3的Ca与U交替占据钙钛矿型晶格的B位。在Ba2Bi2O6中,有一半Bi原子为+3价,另一半为+5价。
在钙钛矿结构中[8],当t=1.0时,形成对称性最高的立方晶格,当0.96<t<1时,晶格为菱面体(Rhombohedral)结构,当t<0.96时,对称性转变为正交(Orthorhombic)结构。图1显示了晶格之间的变化关系。例如,在LaMn1-xNixO3[9]中,当0.5≤x≤0.8时,晶格属立方晶系。NdMnO3[10]、LaFeO3[11]、LaRuO3[12]、LaCoO3[13]、NdCoO3[14]为正交结构,LaMnO3+δ、LaNiO3、LaCuO3-δ、LaAlO3为三方结构[15]。
而La1-εFeO3-1.5ε(ε>0)[11]、La0.8Sr0.2Cu0.15Fe0.85O3-δ和La0.8Sr0.2Cu0.15Al0.85O3-δ[16]应为立方结构,制备条件不同时,产品的晶相也会发生相应变化[15]。
3 B位离子的作用
由于钙钛矿型氧化物的催化活性强烈地依赖于B位阳离子的性质,在设计或改进钙钛矿型催化剂时B位阳离子的选择至关重要。通常选择的B位阳离子是Co、Mn和Fe,这是由于它们对氧化反应十分有效[17,18]。
由La和过渡金属组成的钙钛矿型复合氧化物,对CO氧化的催化活性与B元素简单氧化物的催化活性顺序是一致的[19,20]。由多种B位元素组成的钙钛矿型氧化物,在许多情况下会产生协同效应[21],但其催化活性与B位元素简单氧化物之间并不存在加和关系。尽管钙钛矿型氧化物还不能满足汽车催化剂实际应用的要求,但是大量实验已经证明[13,22],钙钛矿型复合氧化物比各组分元素简单氧化物的催化活性要高。
当B位离子被不同价态的离子取代时,就会引起晶格空位或使B位的其他离子变价。张华民等[23]在研究La0.8Sr0.2CoO3时发现,当Co被Fe或Cu取代时,由于非常价态离子Fe4+和Cu3+的生成,催化剂表面的吸附氧明显增多。当用Ni或Zn取代时,由于非常价态离子Ni3+、Zn3+不易生成,表面吸附氧明显减少。当用Mn取代时,由于Mn4+为正常价态离子,而且满足了Sr2+对B位离子电荷的要求,从而抑制了非常价态离子Co4+的生成,结果表面吸附氧也明显减少。Yasuda等[24]研究显示,在催化氧化CO的反应中,催化剂LaMn1-xCuxO3中的Mn和Cu表现出明显的协同效应,LaMn0.6Cu0.4O3的催化活性比LaMnO3或La2CuO4要高得多,这是由于Cu对CO有活化作用,Mn对O2有活化作用,两者共同促进了反应的进行。
钙钛矿结构增强了混合价态离子的热力学稳定性,体系从一种混合价态变到另一种混合价态,只需要很小的推动力[25],从而使反应活性增强。某些金属离子,例如Cu2+、Ni2+、Co3+等,可以氧化成不稳定的高价态离子,可能充当了催化剂活性位的角色[16]。近来发现,钙钛矿型氧化物具有储氧功能[26,27],这和B位原子的变价作用密切相关。
ABO3化合物对CO氧化的催化活性,受B位离子d电子结构的影响很大[28]。B离子在其周围6个氧离子形成的八面体场的作用下,d轨道分裂成t2g和eg两组轨道。CO中的孤电子对进入金属离子的eg(dz2)空轨道形成σ配位键,同时金属离子t2g轨道上的电子进入CO分子的π*轨道形成反馈π配键。σ-π键的形成削弱了CO分子中的共价键,使CO具有更高的活性。LaFeO3对CO的催化氧化表现出较低的活性,是因为其中的Fe3+处于高自旋状态,不能提供成对电子,对CO产生了反键作用。
4 A位离子的作用
一般认为[29],ABO3型化合物的催化活性主要由B位离子决定,A位离子主要通过控制活性组分B的原子价态和分散状态而起稳定结构的作用。A离子本质上不直接参与反应[30],但是若被价态不同的其他离子取代,就会引起B位离子价态的变化,使得不寻常价态离子变得稳定,同时也可能造成晶格缺陷,从而改变晶格氧的化学位。耿其博等[31]采用柠檬酸络合法制备了La1-xSrxCoO3系列化合物。结果表明,随着A位Sr含量的增加,高价态的钴离子逐渐增多,催化剂的活性也逐渐增强。同时,催化剂的抗硫性能也随之提高。对于非计量钙钛矿化合物LaMnO3+δ[32],当用Sr、Ba、K等取代La时,随着取代量的增加,化合物中多余氧含量δ逐渐减小,催化剂的低温活性大大提高。Falcon等[33]对Sr取代化合物Pr1-xSrxNiO3进行了中子衍射研究,用Rietveld方法对数据精修的结果显示,化合物中Ni-O键明显缩短,同时d能带中出现了空穴掺杂,由于O原子更容易从体相中移去,从而提高了化合物对CO氧化反应的催化活性。
在钙钛矿结构中,A离子和O2-共同组成基本的密堆层,它们之间的结合具有离子键的特征,当A位离子被高价离子取代时,为满足电荷平衡,可能导致2种情况发生,一种是产生A空位,另一种是是引起B离子价态降低。当A位离子被低价离子取代时,就会产生氧空位或者使B位离子价态升高。例如,在La1-xSrxRhO3[34]中有部分Rh变成了+4价态,而在Sm0.86Sr0.1Mn(Ⅲ)0.62Mn(Ⅳ)0.34O3中,同时存在A位取代、A位空缺、B位空缺和B位变价[10]。多数过渡金属具有变价的能力,有利于满足A位离子变价取代的条件。B位离子价态的变化可能会引起配位数的改变,或者引起配位多面体结构的演变[35,36]。Rao等[37]认为,比较大的A位阳离子可以部分失去而形成空缺,这是由于BO3形成的网络结构是比较稳定的。由于B位离子电荷多、半径小,如果B位出现空缺,从能量上看是不利的。事实上,当阳离子空位增加时,晶格中的氧更容易迁移[21]。
5 贵金属取代
将贵金属和钙钛矿型化合物结合起来可以对贵金属起到很好的稳定作用,可以防止贵金属高温烧结或高温蒸发,防止贵金属与载体反应。加入少量的贵金属同样可以提高钙钛矿型催化剂的活性[38]。据Guilhaume等[39]报道,由Pd取代的化合物La2Cu0.8Pd0.2O4,在NO催化还原方面,可以和Pt-Rh/CeO2-Al2O3媲美,对于CO和C3H6的氧化则有更高的活性。Voorhoeve等[40]的研究表明,催化剂La0.8K0.2Mn0.9Rh0.1O3在CO和H2过量时,对NO的还原反应表现出很高的活性。金属Ru有较强的挥发性,且容易氧化生成剧毒的RuO2和RuO4[41],使得其应用受到限制。当Ru形成钙钛矿型化合物时,其稳定性得到显著提高[42]。Teraoka等[43]用Cu和Ru进行晶格取代而得到的催化剂La0.8Sr0.2Co1-2yCuyRuyO3,对NO+CO反应的催化活性与0.5wt%Pt/Al2O3的活性相当。Zhou等[44]的实验显示,Pd负载催化剂Pd/LaFe0.8Co0.2O3比Pd取代催化剂LaFe0.77Co0.17Pd0.06O3的三效活性要高得多,通过对H2-TPR图的研究发现,Pd的加入提高了钙钛矿型氧化物的还原活性,Pd负载催化剂Pd/LaFe0.8Co0.2O3比Pd取代催化剂LaFe0.77Co0.17Pd0.06O3更容易还原。
从晶体结构看[45],贵金属离子占据B位后,有利于离子的定域化分散,提高其抗高温烧结能力。由于贵金属的价态通常低于ABO3中B位元素的正常价态,在晶体场的作用下,贵金属离子有较多的机会处于高氧化态,或者使晶体中产生较多的氧空位。一种公认的看法是,在钙钛矿型氧化物中,氧离子的迁移是通过氧空位进行的,氧空位的增加有利于氧化反应催化剂活性的提高[46]。Tanaka等[47]对LaFe0.57Co0.38Pd0.05O3进行了XPS和XAFS分析。结果表明,在氧化气氛下,Pd以固溶体的形式存在于钙钛矿型晶格中,其结合能比PdO中的Pd还要高。在还原气氛下,Pd形成了合金,并以细小颗粒状态分散在表面。随着氧化气氛和还原气氛的交替变换,Pd的这两种存在形式也周而复始地变化着。Nishihata等[48]也发现了类似的现象,随着氧化气氛和还原气氛的交替进行,Pd原子可逆地进入和逸出钙钛矿晶格,这种运动限制了Pd合金颗粒的长大,使得催化剂LaFe0.57Co0.38Pd0.05O3长期保持较高的催化活性。
References(参考文献)
[1]Tanaka H and Misono M. Advances in designing perovskite catalysts[J]. Current Opinion in Solid State and Materials Science, 2001,5(5):381~387
[2]Libby W F. Promising catalyst for auto exhaust[J]. Science, 1971, 171(3970):499~500
[3]Pedersen L A and Libby W F. Unseparated rare earth cobalt oxide as auto exhaust catalysts[J].Science,1972,176(4041):1355~1366
[4]Voorhoeve R J H, Remeika J P and Freeland P E. Rare earth oxides of manganese & cobalt rival platinum for the treatment of carbon monoxide in auto exhaust[J].Science,1972,177(4046):353~354
[5]Voorhoeve R J H, Remeika J P and Johnson D W. Rare earth manganites: Catalysts with low ammonia yield in the reduction of nitrogen oxides[J].Science,1973,180(4081):62~64
[6]Labhsetwar N K, Watanabe A, Biniwale R B, etal. Alumina supported, perovskite oxide based catalytic materials and their auto-exhaust application[J]. ApplCatalB:Environmental,2001,33(2):165~173
[7]Voorhoeve R J H. Advanced Materials in Catalysis[M]. Burton J J and Garten R L, eds.NewYork: Academic Press,1977.129
[8]Tejuca L G, Fierro J L G and Tascon J M D. Structure and reactivity of perovskite-type oxides[J].Adv Catal,1989,36(2):237~328
[9]DuShaobin(杜少斌),WangJin(王瑾),MaFutai(马福泰),et al. Correlation of Composition, crystal structure, reducibility and catalytic oxidation activity on La-Mn-Ni-O system[J].Acta Physico-Chimica Sinica(物理化学学报),1992,8(5):631~635
[10]Ciambelli P, Cimino S, DeRossi S, et al. AMnO3(A=La,Nd,Sm) and Sm1-xSrxMnO3 perovskites as combustion catalysts: structural, redox and catalytic properties[J].Appl Catal B:Environmental,2000,24(3-4):243~253
[11]Delmastro A, Mazza D, Ronchetti S, etal. Synthesis and characterization of non-stoichiometric LaFeO3 perovskite[J]. Materials Science and Engineering B,2001,79(2):140~145
[12]Labhsetwar N K, Watanabe A and Mitsuhashi T. New improved syntheses of LaRuO3 perovskites and their applications in environmental catalysis[J]. Applied Cataltysis B:Environmental,2003,40(1):21~30
[13]Shu J and Kaliaguene S. Well-dispersed perovskite-type oxidation catalysts[J].ApplCatalB,Environmental,1998,16(3):303~308
[14] González A, Tamayo E M, Porter A B, etal. Synthesis of high surface area perovskite catalysts by non-conventional routes[J]. Catalysis Today,1997,33(1-3):361~369
[15] Isupova L A, Alikina G M, Tsybulya S V, etal. Honeycomb-supported perovskite catalysts for high-temperature processes[J]. Catal Today,2002,75(1-4):305~315
[16] Tofan C, Klvana D and Kirchnerova J. Direct decomposition of nitric oxide over perovskite-type catalysts, Part I Activity when no oxygen is added to the feed[J].Appl CatalA:General,2002,223(1-2):275~286
[17] Weston M and Metcalfe I S. La0.6Sr0.4Co0.2Fe0.8O3 as an anode for direct methane activation in SOFCs[J].Solid State Ionics,1998,113-115(1):247~251
[18]Choudhary V R, Uphade B S and Pataskar S G. Low temperature complete combustion of methane over Ag-doped LaFeO3 and LaFe0.5Co0.5O3 perovskite oxide catalysts[J].Fuel,1999,78(8):919~921
[19] LiWan(李琬) and WangDao(王道).Rare earth perovskite type catalysts and Hopcalite[J].Environmental Chemistry(环境化学),1985,4(2):1~6
[20]Tascon J M D and Tejuca L G. Adsorption of carbon monoxide on the perovskite-type oxide lanthanum cobalt oxide(LaCoO3)[J]. Z Phys Chem, 1980,121(1):79~93
[21]Yamazoe N and Teraoka Y. Oxidation catalysis of perovskite-relatinships to bulk structure and composition (valency,defect,etc.)[J].Catal Today,1990,8(2):175~199
[22]Zhang-Steenwinkel Y, Beckers J and Bliek A. Surface properties and catalytic performance in CO oxidation of cerium substituted lanthanum-manganese oxides[J].ApplCatalA:Geneeral,2002,235(1-2):79~92
[23] ZhangHuamin(张华民),ChenYongying(陈永英),TeraoraYasutake(寺冈靖刚),etal.Effect of partial substitution for A,B sites of perovskite type oxides containing cobalt on oxygen desouption and catalyticactivity[J].Journal of Catalysis(催化学报),1992,13(6):432~436
[24] Yasuda H, Fujiwara Y, Mizuno N, etal. Oxidation of carbon monoxide on LaMn1-xCuxO3 Perovskite-type mixed oxide[J]. J Chem Soc,Faraday Trans,1994,90(8):1183~1189
[25] Belessi V C, Trikalitis P N, Ladavos A K, etal. Structure and catalytic activity of La1-xFeO3 system (x=0.00,0.05,0.10,0.15,0.20,0.25,0.35) for the NO+CO reaction[J]. Appl CatalA: General,1999,177(1):53~68
[26]Zwinkels M F M and Menon P G. High temperature combustion[J]. Catal Rev Sci Eng,1993,35(3):319~326
[27]Davide F and Lucio F. Methane combustion on some Perovskite-like mixed oxides[J]. Appl Catal B:Environmental,1998,16(2):119~126
[28] QinYongning(秦永宁),TianHuiping(田辉平)and ZhangLiu(张鎏).Study on the correlation of delectron configuration and catalytic oxidation activity of LaMO3 compounds[J].ActaChimicaSinica(化学学报),1993,51(4):319~324
[29] LiangZhencheng(梁珍成),QinYongning(秦永宁),LiaoQiaoli(廖巧丽),etal.Properties of perovskite-type La1-xCuxMnO3 catalysts[J]. Chinese Journal of Applied Chemistry(应用化学),1997,14(1):11~15
[30] Wiswanathan B. CO oxidation and NO reduction on perovskite oxiedes[J].Catal Rev-sci Eng,1992,34(4):337~354
[31]GengQibo(耿其博),HuangXiaolin(黄晓林),HuangQing(黄庆),etal.Studies on the SO2 resistance of Co-containing perovskite type oxidation catalysts[J].Journal of Catalysis(催化学报),1989,10(1):79~82
[32]Buciuman F C, Patcas F and Zsak J. TPR-study of substitution effects on reducibility and oxidative non-stoichiometry of La0.8A0.2MnO3+δperovskites[J].J Therm Anal Calorim,2000,61(3):819~825
[33]Falcon H, Martez-Lope M J ,Alonso J A, etal. Large enhancement of the catalytic activity for CO oxidation on hole doped(Ln,Sr)NiO3(Ln=Pr,Sm,Eu)perovskites[J].SolidStateIonics,2000,131(3-4):237~248
[34]Mary T A and Varadaraju U V. Orthorhombic-tetragonal and semiconductou-metal transition in the La1-xSrxRhO3 system[J]. J Solid State Chem,1994,110(1):176~179
[35] Kang Zhenjin(康振晋),Sun Shangmei(孙尚梅)and Guo Zhenping(郭振平).The modules and the structural evolution in perovskite structural founctional materials[J]. Chemistry(化学通报),2000,63(4):23~26
[36]Anderson M T, Vaughey J T and Poeppelmeier K R. Structural similarities among oxygen deficient perovskites[J].Chem Mater,1993,5(2):151~165
[37]Rao C N R, Gopalakrishnan J and Vidyasagar K. Superstructures, ordered defects and nonstoichiometry in metal oxides of perovskite and related structures[J].Ind J Chem Sect A,1984,23A(4):265~284
[38] Guilhaume N and Primet M. Three-way catalytic activity and oxygen storage capacity of perovskite LaMn0.976Rh0.024O3[J]. J Catal,1997,165(2):197~204
[39] Guilhaume N, Peter S D and Primet M. Palladium-substituted lanthanum cuprates: application to auto motive exhaust purification[J]. Appl Catal B,Environmental,1996,10(4):325~344
[40]Voorhoeve R J H. Advanced Materials in Catalysis(ed.BurtonJJ,GartenRL)[M].NewYork:Academic Press,1977.173
[41] Kobylinski T P and Taylor B W. The catalytic chemistry of nitric oxideⅡ. Reduction of nitric oxide over noble metal catalysts[J]. J Catal,1974,33(3):376~384
[42]Labhsetwar N K, Watanabe A and Mitsuhashi T. New improved syntheses of LaRuO3 perovskites and their applications in environmental catalysis[J].Applied Cataltysis B:Environmental,2003,40(1):21~30
[43]TeraokaY,NiiH,KagawaS,etal.Influence of the simultaneous substitution of Cu and Ruin the perovskite-type(La,Sr)MO3(M=Al,Mn,Fe,Co)on the catalytic activity for CO oxidation and CO-NO reactions[J]. Appl Catal A: General,2000,194-195(1):35~41
[44] Zhou K, Chen H, Tian Q, etal. Pd-containing perovskite-type oxides used for three-way catalysts[J]. Journal of Molecular Catalysis A:Chemical,2002,189(2):225~232
[45] ZhouKebin(周克斌),ChenHongde(陈宏德),TianQun(田群),etal.Study on the effect of doped chemicals palladium on the performance of Fe and Co series perovskite-type three-way catalysts[J]. Environmental Chemistry(环境化学),2002,21(3):218~223
[46]Hong S S and Lee G D. Simultaneous removal of NO and carbon particulates over lanthanoid perovskite-type catalysts[J]. CatalysisToday,2000,63(2-4):397~404
[47] Tanaka H, Uenishi M, Tan I, etal. An Intelligent Catalyst[R]. SA paper,2001,2001-01-1301
[48] Nishihata Y, Mizuki J, Akao T, etal. Self-regeneration of a Pd-perovdkite catalyst for automotive emissions control[J].Nature,2002,418(6894):164~167
以上是关于钙钛矿型催化材料的相关信息的主要内容,如果未能解决你的问题,请参考以下文章
Excel催化剂开源第36波-图片Exif信息提取,速度超快,信息超全
这个新型AI电子器件没有硅!北航32岁教授共同一作,能模拟大脑神经元,还登上了Science...