Python 数据可视化:数据分布统计图和热图
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python 数据可视化:数据分布统计图和热图相关的知识,希望对你有一定的参考价值。
参考技术A 本课将继续介绍 Seaborn 中的统计图。一定要牢记,Seaborn 是对 Matplotlib 的高级封装,它优化了很多古老的做图过程,因此才会看到一个函数解决问题的局面。在统计学中,研究数据的分布情况,也是一个重要的工作,比如某些数据是否为正态分布——某些机器学习模型很在意数据的分布情况。
在 Matplotlib 中,可以通过绘制直方图将数据的分布情况可视化。在 Seaborn 中,也提供了绘制直方图的函数。
输出结果:
sns.distplot 函数即实现了直方图,还顺带把曲线画出来了——曲线其实代表了 KDE。
除了 sns.distplot 之外,在 Seaborn 中还有另外一个常用的绘制数据分布的函数 sns.kdeplot,它们的使用方法类似。
首先看这样一个示例。
输出结果:
① 的作用是设置所得图示的背景颜色,这样做的目的是让下面的 ② 绘制的图像显示更清晰,如果不设置 ①,在显示的图示中看到的就是白底图像,有的部分看不出来。
② 最终得到的是坐标网格,而且在图中分为三部分,如下图所示。
相对于以往的坐标网格,多出了 B 和 C 两个部分。也就是说,不仅可以在 A 部分绘制某种统计图,在 B 和 C 部分也可以绘制。
继续操作:
输出结果:
语句 ③ 实现了在坐标网格中绘制统计图的效果,jp.plot 方法以两个绘图函数为参数,分别在 A 部分绘制了回归统计图,在 B 和 C 部分绘制了直方图,而且直方图分别表示了对应坐标轴数据的分布,即:
我们把有语句 ② 和 ③ 共同实现的统计图,称为联合统计图。除了用 ② ③ 两句可以绘制这种图之外,还有一个函数也能够“两步并作一步”,具体如下:
输出结果:
以上是关于Python 数据可视化:数据分布统计图和热图的主要内容,如果未能解决你的问题,请参考以下文章