在 pandas DataFrame 中重新排序 MultiIndex 的级别

Posted

技术标签:

【中文标题】在 pandas DataFrame 中重新排序 MultiIndex 的级别【英文标题】:Reorder levels of MultiIndex in a pandas DataFrame 【发布时间】:2016-03-05 22:03:29 【问题描述】:

我有一个看起来像这样的 DataFrame:

>>> df = pd.DataFrame(index=pd.MultiIndex.from_tuples([(num,letter,color) 
                    for num in range(1,3) 
                    for letter in ['a','b','c'] for color in ['Red','Green']], 
                    names=['Number','Letter','Color']))
>>> df['Value'] = np.random.randint(1,100,len(df))
>>> df
                     Value
Number Letter Color       
1      a      Red       97
              Green     61
       b      Red       97
              Green     98
       c      Red       91
              Green     47
2      a      Red       17
              Green     63
       b      Red       26
              Green     73
       c      Red       34
              Green     68

但我实际上希望我的索引按“字母、颜色、数字”排序。

我目前这样做如下:

>>> df.reset_index().set_index(['Letter','Color','Number'])
                     Value
Letter Color Number       
a      Red   1          97
       Green 1          61
b      Red   1          97
       Green 1          98
c      Red   1          91
       Green 1          47
a      Red   2          17
       Green 2          63
b      Red   2          26
       Green 2          73
c      Red   2          34
       Green 2          68

这是最好的方法吗?

【问题讨论】:

【参考方案1】:

最好使用reorder_levels 来操作MultiIndex 级别的顺序。只需按您想要的顺序传入关卡名称/编号列表:

>>> df.reorder_levels(['Letter','Color','Number'])
                     Value
Letter Color Number       
a      Red   1          41
       Green 1          56
b      Red   1          43
       Green 1          42
c      Red   1          89
       Green 1          18
a      Red   2          55
       Green 2          93
b      Red   2          64
       Green 2           9
c      Red   2          21
       Green 2          93

如果你只是想交换两个级别的位置,还有swaplevel

【讨论】:

有没有办法做到这一点? @BallpointBen 添加了一个答案——您可以直接在索引上调用reorder_levels【参考方案2】:

就地修改

调用MultiIndex.reorder_levels,然后将新索引分配给您的DataFrame。

df.index = df.index.reorder_levels(['Letter', 'Color', 'Number']) 
df

                     Value
Letter Color Number       
a      Red   1          41
       Green 1          56
b      Red   1          43
       Green 1          42
c      Red   1          89
       Green 1          18
a      Red   2          55
       Green 2          93
b      Red   2          64
       Green 2           9
c      Red   2          21
       Green 2          93

由于索引对象是不可变的,您无法克服创建新索引的问题,但您可以通过调用 df.reorder_levels 来避免重复数据。

【讨论】:

以上是关于在 pandas DataFrame 中重新排序 MultiIndex 的级别的主要内容,如果未能解决你的问题,请参考以下文章

pandas中dataframe索引排序实战:pandas中dataframe索引降序排序pandas中dataframe索引升序排序

pandas重新索引

如何重新排序 Pandas 中的多索引列?

自然排序 Pandas DataFrame

pandas笔记:根据列索引名称/行索引名称 对列重新排序

Pandas | 08 重建索引