获取没有匹配指定签名和转换错误的循环
Posted
技术标签:
【中文标题】获取没有匹配指定签名和转换错误的循环【英文标题】:Getting No loop matching the specified signature and casting error 【发布时间】:2018-05-30 00:22:48 【问题描述】:我是 python 和机器学习的初学者。当我尝试将数据拟合到 statsmodels.formula.api OLS.fit() 时出现以下错误
Traceback(最近一次调用最后一次):
文件“”,第 47 行,在 regressor_OLS = sm.OLS(y , X_opt).fit()
文件 "E:\Anaconda\lib\site-packages\statsmodels\regression\linear_model.py", 第 190 行,合适 self.pinv_wexog,singular_values = pinv_extended(self.wexog)
文件 "E:\Anaconda\lib\site-packages\statsmodels\tools\tools.py", 第 342 行,在 pinv_extended u, s, vt = np.linalg.svd(X, 0)
文件“E:\Anaconda\lib\site-packages\numpy\linalg\linalg.py”,行 1404, 在 svd u, s, vt = gufunc(a, signature=signature, extobj=extobj)
TypeError: 没有循环匹配指定的签名和强制转换是 找到 ufunc svd_n_s
代码
#Importing Libraries
import numpy as np # linear algebra
import pandas as pd # data processing
import matplotlib.pyplot as plt #Visualization
#Importing the dataset
dataset = pd.read_csv('Video_Games_Sales_as_at_22_Dec_2016.csv')
#dataset.head(10)
#Encoding categorical data using panda get_dummies function . Easier and straight forward than OneHotEncoder in sklearn
#dataset = pd.get_dummies(data = dataset , columns=['Platform' , 'Genre' , 'Rating' ] , drop_first = True ) #drop_first use to fix dummy varible trap
dataset=dataset.replace('tbd',np.nan)
#Separating Independent & Dependant Varibles
#X = pd.concat([dataset.iloc[:,[11,13]], dataset.iloc[:,13: ]] , axis=1).values #Getting important variables
X = dataset.iloc[:,[10,12]].values
y = dataset.iloc[:,9].values #Dependant Varible (Global sales)
#Taking care of missing data
from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values = 'NaN' , strategy = 'mean' , axis = 0)
imputer = imputer.fit(X[:,0:2])
X[:,0:2] = imputer.transform(X[:,0:2])
#Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.2 , random_state = 0)
#Fitting Mutiple Linear Regression to the Training Set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train,y_train)
#Predicting the Test set Result
y_pred = regressor.predict(X_test)
#Building the optimal model using Backward Elimination (p=0.050)
import statsmodels.formula.api as sm
X = np.append(arr = np.ones((16719,1)).astype(float) , values = X , axis = 1)
X_opt = X[:, [0,1,2]]
regressor_OLS = sm.OLS(y , X_opt).fit()
regressor_OLS.summary()
数据集
dataset link
在 stack-overflow 或 google 上找不到任何有助于解决此问题的方法。
【问题讨论】:
看看你的X_opt
。这应该是一个只有数值的 DataFrame,最好是 float64。回溯意味着很可能其中一种 dtype 是错误的。 X_opt.dtypes
或 X_opt.dtype
如果它是一个 numpy ndarray。
【参考方案1】:
尝试指定
dtype = 'float'
创建矩阵时。 示例:
a=np.matrix([[1,2],[3,4]], dtype='float')
希望这行得通!
【讨论】:
我喜欢我可以快速来到 ***,并且大多数时候可以快速解决困扰我很长时间的问题...【参考方案2】:面临类似的问题。解决了我提到 dtype 并展平数组的问题。
numpy 版本:1.17.3
a = np.array(a, dtype=np.float)
a = a.flatten()
【讨论】:
flatten
为我工作,没有 dtype 演员。谢谢。你能解释一下你为什么建议flatten
以及它在做什么。【参考方案3】:
如前所述,您需要确保 X_opt 是浮点类型。 例如,在您的代码中,它看起来像这样:
X_opt = X[:, [0,1,2]]
X_opt = X_opt.astype(float)
regressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()
regressor_OLS.summary()
【讨论】:
【参考方案4】:遇到类似问题,我用df.values[]
y = df.values[:, 4]
使用df.iloc[].values
函数修复了该问题。
y = dataset.iloc[:, 4].values
df.values[]
函数返回对象数据类型
array([192261.83, 191792.06, 191050.39, 182901.99, 166187.94, 156991.12,
156122.51, 155752.6, 152211.77, 149759.96, 146121.95, 144259.4,
141585.52, 134307.35, 132602.65, 129917.04, 126992.93, 125370.37,
124266.9, 122776.86, 118474.03, 111313.02, 110352.25, 108733.99,
108552.04, 107404.34, 105733.54, 105008.31, 103282.38, 101004.64,
99937.59, 97483.56, 97427.84, 96778.92, 96712.8, 96479.51,
90708.19, 89949.14, 81229.06, 81005.76, 78239.91, 77798.83,
71498.49, 69758.98, 65200.33, 64926.08, 49490.75, 42559.73,
35673.41, 14681.4], dtype=object)
但是
df.iloc[:, 4].values returns floats array
这是什么
regressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()
OLS() 有趣accepts
或
您可以在将 y 插入有趣的 OLS() 之前更改其数据类型
y = np.array(y, dtype = float)
【讨论】:
【参考方案5】:从 NumPy 1.18.4 降级到 1.15.2 对我有用:
pip install --upgrade numpy==1.15.2
【讨论】:
以上是关于获取没有匹配指定签名和转换错误的循环的主要内容,如果未能解决你的问题,请参考以下文章
为啥numpy在尝试预测回归时会引发异常错误:“ufunc'add'没有包含具有签名匹配类型的循环”?