为 GPU 编译张量流示例自定义操作
Posted
技术标签:
【中文标题】为 GPU 编译张量流示例自定义操作【英文标题】:Compiling Tensor flow example custom op for GPU 【发布时间】:2018-09-21 13:57:14 【问题描述】:按照 Tensorflow 提供的在线 example,我无法使用他们在 GPU 内核 下定义的自定义操作。构建示例的说明列出了三个必需的文件:
头文件
// kernel_example.h
#ifndef KERNEL_EXAMPLE_H_
#define KERNEL_EXAMPLE_H_
template <typename Device, typename T>
struct ExampleFunctor
void operator()(const Device& d, int size, const T* in, T* out);
;
#if GOOGLE_CUDA
// Partially specialize functor for GpuDevice.
template <typename Eigen::GpuDevice, typename T>
struct ExampleFunctor
void operator()(const Eigen::GpuDevice& d, int size, const T* in, T* out);
;
#endif
#endif //KERNEL_EXAMPLE_H_ [1] commented out
((1) 这里我把最后一行的KERNEL_EXAMPLE_H_
注释掉了,因为它会导致编译错误。)
.cc 文件
// kernel_example.cc
#include "kernel_example.h" <--------[2] replaced example.h
#include "tensorflow/core/framework/op_kernel.h"
using namespace tensorflow;
using CPUDevice = Eigen::ThreadPoolDevice;
using GPUDevice = Eigen::GpuDevice;
// CPU specialization of actual computation.
template <typename T>
struct ExampleFunctor<CPUDevice, T>
void operator()(const CPUDevice& d, int size, const T* in, T* out)
for (int i = 0; i < size; ++i)
out[i] = 2 * in[i];
;
// OpKernel definition.
// template parameter <T> is the datatype of the tensors.
template <typename Device, typename T>
class ExampleOp : public OpKernel
public:
explicit ExampleOp(OpKernelConstruction* context) : OpKernel(context)
void Compute(OpKernelContext* context) override
// Grab the input tensor
const Tensor& input_tensor = context->input(0);
// Create an output tensor
Tensor* output_tensor = NULL;
OP_REQUIRES_OK(context, context->allocate_output(0, input_tensor.shape(),
&output_tensor));
// Do the computation.
OP_REQUIRES(context, input_tensor.NumElements() <= tensorflow::kint32max,
errors::InvalidArgument("Too many elements in tensor"));
ExampleFunctor<Device, T>()(
context->eigen_device<Device>(),
static_cast<int>(input_tensor.NumElements()),
input_tensor.flat<T>().data(),
output_tensor->flat<T>().data());
;
// Register the CPU kernels.
#define REGISTER_CPU(T) \
REGISTER_KERNEL_BUILDER( \
Name("Example").Device(DEVICE_CPU).TypeConstraint<T>("T"), \
ExampleOp<CPUDevice, T>);
REGISTER_CPU(float);
REGISTER_CPU(int32);
// Register the GPU kernels.
#ifdef GOOGLE_CUDA
#define REGISTER_GPU(T) \
/* Declare explicit instantiations in kernel_example.cu.cc. */ \
extern template ExampleFunctor<GPUDevice, T>; \
REGISTER_KERNEL_BUILDER( \
Name("Example").Device(DEVICE_GPU).TypeConstraint<T>("T"), \
ExampleOp<GPUDevice, T>);
REGISTER_GPU(float);
REGISTER_GPU(int32);
#endif // GOOGLE_CUDA
([2]这里我把头文件的名字改成和文件名匹配了。) 和
.cu.cc 文件
// kernel_example.cu.cc
#ifdef GOOGLE_CUDA
#define EIGEN_USE_GPU
#include "kernel_example.h" //[3] replaced example.h
#include "tensorflow/core/util/cuda_kernel_helper.h"
using namespace tensorflow;
using GPUDevice = Eigen::GpuDevice;
// Define the CUDA kernel.
template <typename T>
__global__ void ExampleCudaKernel(const int size, const T* in, T* out)
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < size;
i += blockDim.x * gridDim.x)
out[i] = 2 * ldg(in + i);
// Define the GPU implementation that launches the CUDA kernel.
template <typename T>
void ExampleFunctor<GPUDevice, T>::operator()(
const GPUDevice& d, int size, const T* in, T* out)
// Launch the cuda kernel.
//
// See core/util/cuda_kernel_helper.h for example of computing
// block count and thread_per_block count.
int block_count = 1024;
int thread_per_block = 20;
ExampleCudaKernel<T>
<<<block_count, thread_per_block, 0, d.stream()>>>(size, in, out);
// Explicitly instantiate functors for the types of OpKernels registered.
template struct ExampleFunctor<GPUDevice, float>;
template struct ExampleFunctor<GPUDevice, int32>;
#endif // GOOGLE_CUDA
[3]这里我把头文件的名字改成和文件名匹配了。
我所做的仅有的 3 个小改动列在每个脚本下方。
使用建议的方法构建操作库:
TF_CFLAGS=( $(python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_compile_flags()))') )
TF_LFLAGS=( $(python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_link_flags()))') )
g++ -std=c++11 -shared kernel_example.cc kernel_example.cu.cc -o gpu_op.so -fPIC $TF_CFLAGS[@] $TF_LFLAGS[@] -O2
似乎成功了。并生成gpu_op.so
。但是导入这个操作库并尝试使用它:
# run_op.py
import tensorflow as tf
import numpy as np
my_module = tf.load_op_library('./gpu_op.so')
a = np.ones((20,5,5))
in1 = tf.convert_to_tensor(a, dtype = float)
print("input1: ", in1)
with tf.Session() as sess:
ans = sess.run(my_module.example(in1))
print("output:", ans)
导致找不到操作:
File "run_op.py", line 11, in <module>
ans = sess.run(my_module.example(in1))
AttributeError: module '33c9073b4d33739023b5757fe9acdd79' has no attribute 'example'
我对 C++ 比较陌生,可能无法正确编译。那么我应该怎么做才能使这个模块可以导入呢?我对上面提到的代码进行 3 处更改是否正确?
【问题讨论】:
【参考方案1】:原来我忽略了在这个例子中使用 CUDA 代码需要使用 nvidia 编译器nvcc
。
可以编译使用:
TF_CFLAGS=( $(python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_compile_flags()))') )
TF_LFLAGS=( $(python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_link_flags()))') )
nvcc -std=c++11 cuda_op_kernel.cc cuda_op_kernel.cu.cc -o cuda_op_kernel.so -shared -Xcompiler -fPIC $TF_CFLAGS[@] $TF_LFLAGS[@] -O2
【讨论】:
以上是关于为 GPU 编译张量流示例自定义操作的主要内容,如果未能解决你的问题,请参考以下文章
添加自定义图层时训练非常慢。我发现这个张量运算在 cpu 上而不是在 gpu 上运行,我不知道为啥?