为啥这段代码使用 Math.pow 打印“HELLO WORLD”?
Posted
技术标签:
【中文标题】为啥这段代码使用 Math.pow 打印“HELLO WORLD”?【英文标题】:Why does this code using Math.pow print "HELLO WORLD"?为什么这段代码使用 Math.pow 打印“HELLO WORLD”? 【发布时间】:2018-10-31 06:27:27 【问题描述】:我发现了以下代码。我知道,它看起来不像 this one 使用看似随机的数字那么奇怪/令人兴奋,但它似乎比 this one 在大数字上使用位移更复杂:
long[] c = 130636800L, -5080148640L, 13802573088L, -14974335980L, 8683908340L,
-3006955245L, 651448014L, -89047770L, 7457160L, -349165L, 6998L;
for (int x = 0; x < 11; x++)
long s = 0;
for (int i = 0; i < 11; i++)
s += c[i] * Math.pow(x, i);
System.out.print((char)(s / 1814400));
Code on Ideone
输出:
你好世界
它是如何工作的?是某种形式的加密还是有人为构建它而生气?
【问题讨论】:
提示:如何反转整个计算?!里面没有什么魔法,只是经过一些计算的数字。 “它是如何工作的?” - 现在是铅笔和纸的时间..... @MitchWheat 也许也可以用计算器。 与其说是“加密”不如说是“混淆”。 没有人疯狂地建造它,但他们可能有很多空闲时间。 :) 他们只是获取消息的每个代码点,对其应用一些操作,最终得到一个值,然后编写一个程序来反转这些操作以恢复原始代码点。有人可能会在答案部分提供完整的详细信息。 【参考方案1】:让我们开始一些数学:
解出以下方程式,即可得到答案。这些方程有一个唯一解,因为方程的数量等于未知变量的数量。
设c[0] = 72
,即'H'的ASCII值。
为了清楚起见:我使用^
来提高惯例。现在解决:
1^0 * c[0] + 1^1 * c[1] + 1^2 * c[2] + 1^3 * c[3] + 1^4 * c[4] + 1^5 * c[5] + 1^6 * c[6] + 1^7 * c[7] + 1^8 * c[8] + 1^9 * c[9] + 1^10 * c[10] = 69
2^0 * c[0] + 2^1 * c[1] + 2^2 * c[2] + 2^3 * c[3] + 2^4 * c[4] + 2^5 * c[5] + 2^6 * c[6] + 2^7 * c[7] + 2^8 * c[8] + 2^9 * c[9] + 2^10 * c[10] = 76
3^0 * c[0] + 3^1 * c[1] + 3^2 * c[2] + 3^3 * c[3] + 3^4 * c[4] + 3^5 * c[5] + 3^6 * c[6] + 3^7 * c[7] + 3^8 * c[8] + 3^9 * c[9] + 3^10 * c[10] = 76
4^0 * c[0] + 4^1 * c[1] + 4^2 * c[2] + 4^3 * c[3] + 4^4 * c[4] + 4^5 * c[5] + 4^6 * c[6] + 4^7 * c[7] + 4^8 * c[8] + 4^9 * c[9] + 4^10 * c[10] = 79
5^0 * c[0] + 5^1 * c[1] + 5^2 * c[2] + 5^3 * c[3] + 5^4 * c[4] + 5^5 * c[5] + 5^6 * c[6] + 5^7 * c[7] + 5^8 * c[8] + 5^9 * c[9] + 5^10 * c[10] = 32
6^0 * c[0] + 6^1 * c[1] + 6^2 * c[2] + 6^3 * c[3] + 6^4 * c[4] + 6^5 * c[5] + 6^6 * c[6] + 6^7 * c[7] + 6^8 * c[8] + 6^9 * c[9] + 6^10 * c[10] = 87
7^0 * c[0] + 7^1 * c[1] + 7^2 * c[2] + 7^3 * c[3] + 7^4 * c[4] + 7^5 * c[5] + 7^6 * c[6] + 7^7 * c[7] + 7^8 * c[8] + 7^9 * c[9] + 7^10 * c[10] = 79
8^0 * c[0] + 8^1 * c[1] + 8^2 * c[2] + 8^3 * c[3] + 8^4 * c[4] + 8^5 * c[5] + 8^6 * c[6] + 8^7 * c[7] + 8^8 * c[8] + 8^9 * c[9] + 8^10 * c[10] = 82
9^0 * c[0] + 9^1 * c[1] + 9^2 * c[2] + 9^3 * c[3] + 9^4 * c[4] + 9^5 * c[5] + 9^6 * c[6] + 9^7 * c[7] + 9^8 * c[8] + 9^9 * c[9] + 9^10 * c[10] = 76
10^0 * c[0] + 10^1 * c[1] + 10^2 * c[2] + 10^3 * c[3] + 10^4 * c[4] + 10^5 * c[5] + 10^6 * c[6] + 10^7 * c[7] + 10^8 * c[8] + 10^9 * c[9] + 10^10 * c[10] = 68
注意未知数的数量是c[1]
到c[10]
,所以是10。我们知道c[0] = 72
,所以它不是未知数,方程的数量是10。
现在我们只需将所有数字乘以 1814400,然后除以答案中的相同,因此它不会改变任何内容,或者通过求解方程式找到的答案可能不是整数,因此乘以 1814400 得到整数.
您可以使用this code for solving simultaneous equations of any order 解这些方程。
【讨论】:
【参考方案2】:受answer from user9823668 的启发,我找到了另一种方法来逆向计算。代码的内循环(包括从输出行开始的除法)基本表示如下多项式:
该多项式是针对代码外循环中的值 0 到 10 计算的,并产生结果 ASCII 字符。所以问题是:如何适应polynomial through given consecutive data points?
my search results 之一指向术语Newton polynomial。这是给定数据点集的所谓插值多项式。由于多项式是针对 0 到 10 的值计算的,所以这里有 xi = i 的 special case。因此,为了构造上述多项式,我们必须计算一些二项式系数。
首先我们必须在数据点上计算divided differences(即ASCII编码的函数输出):
0: H = 72
1: E = 69 -3
2: L = 76 7 10
3: L = 76 0 -7 -17
4: O = 79 3 3 10 27
5: = 32 -47 -50 -53 -63 -90
6: W = 87 55 102 152 205 268 358
7: O = 79 -8 -63 -165 -317 -522 -790 -1148
8: R = 82 3 11 74 239 556 1078 1868 3016
9: L = 76 -6 -9 -20 -94 -333 -889 -1967 -3835 -6851
10: D = 68 -8 -2 7 27 121 454 1343 3310 7145 13996
然后,每列中最上面的条目是我们构建插值多项式所需的系数:
72
- 3 / 1 x
+ 10 / 2 x(x-1)
- 17 / 6 x(x-1)(x-2)
+ 27 / 24 x(x-1)(x-2)(x-3)
- 90 / 120 x(x-1)(x-2)(x-3)(x-4)
+ 358 / 720 x(x-1)(x-2)(x-3)(x-4)(x-5)
- 1148 / 5040 x(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)
+ 3016 / 40320 x(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)
- 6851 / 362880 x(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)
+ 13996 / 3628800 x(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)(x-9)
这里,分母代表n!(参见special case)。 通过扩展这个公式(例如,通过使用WolframAlpha),您可以得到上面显示的多项式。如果有人想知道,多项式如下所示:
【讨论】:
以上是关于为啥这段代码使用 Math.pow 打印“HELLO WORLD”?的主要内容,如果未能解决你的问题,请参考以下文章
为啥 numpy.power 为小指数返回 0 而 math.pow 返回正确答案?